Unbounded Solutions of Asymmetric Oscillator

Type: Article

Publication Date: 2013-01-01

Citations: 0

DOI: https://doi.org/10.1155/2013/218346

Abstract

We obtain sufficient conditions for the existence of unbounded solutions of the following nonlinear differential equation<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mrow><mml:msub><mml:mi>φ</mml:mi><mml:mi>p</mml:mi></mml:msub><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mi>x</mml:mi><mml:mo>′</mml:mo></mml:msup><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mo>+</mml:mo><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mrow><mml:mi>p</mml:mi><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mo stretchy="false">[</mml:mo><mml:mrow><mml:mi>α</mml:mi><mml:msub><mml:mi>φ</mml:mi><mml:mi>p</mml:mi></mml:msub><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mrow><mml:msup><mml:mi>x</mml:mi><mml:mo>+</mml:mo></mml:msup></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mo>−</mml:mo><mml:mi>β</mml:mi><mml:msub><mml:mi>φ</mml:mi><mml:mi>p</mml:mi></mml:msub><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mrow><mml:msup><mml:mi>x</mml:mi><mml:mo>−</mml:mo></mml:msup></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo stretchy="false">]</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mrow><mml:mi>p</mml:mi><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mi>f</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mrow><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi>x</mml:mi><mml:mo>,</mml:mo><mml:msup><mml:mi>x</mml:mi><mml:mo>′</mml:mo></mml:msup></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:math>, where<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:msub><mml:mi>φ</mml:mi><mml:mi>p</mml:mi></mml:msub><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>u</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:msup><mml:mrow><mml:mo stretchy="false">|</mml:mo><mml:mi>u</mml:mi><mml:mo stretchy="false">|</mml:mo></mml:mrow><mml:mrow><mml:mi>p</mml:mi><mml:mo>−</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mi>u</mml:mi><mml:mo>, </mml:mo><mml:mi>p</mml:mi><mml:mo>&gt;</mml:mo><mml:mn>1</mml:mn><mml:mo>, </mml:mo><mml:msup><mml:mi>x</mml:mi><mml:mo>+</mml:mo></mml:msup><mml:mo>=</mml:mo><mml:mtext>max</mml:mtext><mml:mrow><mml:mo stretchy="false">{</mml:mo><mml:mrow><mml:mi>x</mml:mi><mml:mo>,</mml:mo><mml:mn>0</mml:mn></mml:mrow><mml:mo stretchy="false">}</mml:mo></mml:mrow><mml:mo>, </mml:mo><mml:msup><mml:mi>x</mml:mi><mml:mo>−</mml:mo></mml:msup><mml:mo>=</mml:mo><mml:mtext>max</mml:mtext><mml:mrow><mml:mo stretchy="false">{</mml:mo><mml:mrow><mml:mo>−</mml:mo><mml:mi>x</mml:mi><mml:mo>,</mml:mo><mml:mn>0</mml:mn></mml:mrow><mml:mo stretchy="false">}</mml:mo></mml:mrow><mml:mo>,</mml:mo><mml:mi>α</mml:mi><mml:mo>,</mml:mo><mml:mi>β</mml:mi></mml:math>are positive constants, and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M3"><mml:mrow><mml:mi>f</mml:mi></mml:mrow></mml:math>is continuous, bounded, and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M4"><mml:mrow><mml:mi>T</mml:mi></mml:mrow></mml:math>-periodic in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M5"><mml:mrow><mml:mi>t</mml:mi></mml:mrow></mml:math>for some<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M6"><mml:mi>T</mml:mi><mml:mo>&gt;</mml:mo><mml:mn>0</mml:mn></mml:math>.

Locations

  • Project Euclid (Cornell University) - View - PDF
  • DOAJ (DOAJ: Directory of Open Access Journals) - View
  • Abstract and Applied Analysis - View - PDF

Similar Works

Action Title Year Authors
+ Unbounded solutions and periodic solutions for second order differential equations with asymmetric nonlinearity 2007 Xiong Li
Ziheng Zhang
+ Unbounded solutions of asymmetric oscillator 2004 Xiaojing Yang
+ PDF Chat Unbounded Solutions to a System of Coupled Asymmetric Oscillators at Resonance 2022 Alberto Boscaggin
Walter Dambrosio
Duccio Papini
+ A note on the existence of unbounded solutions to a perturbed asymmetric oscillator 2002 Walter Dambrosio
+ Unboundedness of solutions for perturbed asymmetric oscillators 2011 Lixia Wang
Shiwang Ma
+ Periodic and unbounded motions in asymmetric oscillators at resonance 2015 Shiwang Ma
+ Unbounded solutions of the equation <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mrow><mml:mover accent="true"><mml:mrow><mml:mi>y</mml:mi></mml:mrow><mml:mrow><mml:mo>̇</mml:mo></mml:mrow></mml:mover><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo stretchy="false">)</mml:mo><mml:mo>=</mml:mo><mml:msubsup><mml:mrow><mml:mo>∑</mml:mo></mml:mrow><mml:mrow><mml:mi>i</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow><mml:mrow><… 2013 Josef Diblı́k
Radoslav Chupáč
Miroslava Růžičková
+ Unbounded solutions in asymmetric oscillations 2004 Xiaojing Yang
+ Unboundedness of the large solutions of an asymmetric oscillator 2004 Xiaojing Yang
+ PDF Chat On oscillations of unbounded solutions 1989 István Győri
G. Ladas
Lewis Pakula
+ Unboundedness of the large solutions of some asymmetric oscillators at resonance 2004 Xiaojing Yang
+ PDF Chat Multiplicity results for periodic solutions of second order ODEs with asymmetric nonlinearities 1996 Carlota Rebelo
Fabio Zanolin
+ Unbounded oscillation criteria for fourth order neutral differential equations of non-canonical type 2022 Rashmi Rekha Mohanta
Arun Kumar Tripathy
+ PDF Chat On the asymptotic stability of oscillators with unbounded damping 1976 Zvi Artstein
E. F. Infante
+ Coexistence of Unbounded Solutions and Periodic Solutions of a Class of Planar Systems with Asymmetric Nonlinearities 2010 Qihuai Liu
Dingbian Qian
Xiying Sun
+ PDF Chat Periodic Solutions of Duffing Equation with an Asymmetric Nonlinearity and a Deviating Argument 2013 Zaihong Wang
Jin Li
Tiantian Ma
+ Unbounded oscillation of fourth order functional differential equations 2020 Arun Kumar Tripathy
Rashmi Rekha Mohanta
+ Unbounded solutions to a system of coupled asymmetric oscillators at resonance 2021 Alberto Boscaggin
Walter Dambrosio
Duccio Papini
+ PDF Chat Unbounded Solutions to Systems of Differential Equations at Resonance 2020 Alberto Boscaggin
Walter Dambrosio
Duccio Papini
+ Boundedness and oscillation for nonlinear dynamic equations on a time scale 2003 Lynn Erbe
Allan Peterson

Works That Cite This (0)

Action Title Year Authors