On common values of<i>ϕ</i>(<i>n</i>) and<i>σ</i>(<i>m</i>), II

Type: Article

Publication Date: 2012-12-14

Citations: 5

DOI: https://doi.org/10.2140/ant.2012.6.1669

Abstract

On common values of φ(n) and σ (n), II Kevin Ford and Paul PollackFor each positive-integer valued arithmetic function f , let V f ⊂ ‫ގ‬ denote the image of f , and putRecently Ford, Luca, and Pomerance showed that V φ ∩ V σ is infinite, where φ denotes Euler's totient function and σ is the usual sum-of-divisors function.Work of Ford shows that V φ (x) V σ (x) as x → ∞.Here we prove a result complementary to that of Ford et al. by showing that most φ-values are not σ -values, and vice versa.More precisely, we prove that, as x → ∞,V φ (x) + V σ (x) (log log x) 1/2+o(1) .

Locations

  • Algebra & Number Theory - View - PDF
  • Project Euclid (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ On common values of $ϕ(n)$ and $σ(m)$, II 2010 Kevin Ford
Paul Pollack
+ On common values of $\phi(n)$ and $\sigma(m)$, II 2010 Kevin Ford
Paul Pollack
+ On common values of φ(n) and σ(m). I 2011 Kevin Ford
Paul Pollack
+ PDF Chat Common values of the arithmetic functions <i>ϕ</i> and <i>σ</i> 2010 Kevin Ford
Florian Luca
Carl Pomerance
+ On the greatest common divisor of $n$ and the $n$th Fibonacci number, II 2022 Abhishek Jha
Carlo Sanna
+ On common values of phi(n) and sigma(n), I 2010 Kevin Ford
Paul Pollack
+ PDF Chat On composite<i>n</i>for which<i>φ</i>(<i>n</i>)<i>∣</i><i>n</i>− 1. II 1977 Carl Pomerance
+ $\phi$ and $\sigma$: from Euler to Erd\H os 2011 Florian Luca
H.J.J. teRiele
+ On the Arithmetic Mean of the Square Roots of the First <i>n</i> Positive Integers 2017 Mircea Merca
+ PDF Chat On the coincidence of <i>L</i>-functions 1986 Hidenori Ishii
+ PDF Chat On<i>p</i>-adic distributions 1982 Yuri Osipov
+ On the greatest common divisor of <i>n</i> and the <i>n</i>th Fibonacci number, II 2022 Abhishek Jha
Carlo Sanna
+ The <i>η</i> Function and Dedekind Sums 2017 Ranjan Roy
+ On Number Theoretic Functions Which Satisfy<i>f</i>(<i>x + y</i>) =<i>f</i>(<i>f</i>(<i>x</i>) +<i>f</i>(<i>y</i>)) 1973 Joseph N. Simone
+ PDF Chat On finitely mean valent functions. II 1940 D. C. Spencer
+ PDF Chat On Finitely Mean Valent Functions. II 1940 D. C. Spencer
+ ON THE AVERAGE VALUE OF A GENERALIZED PILLAI FUNCTION OVER !(i) IN THE ARITHMETIC PROGRESSION 2013 P. D. Varbanets
+ On f-plentiful numbers 1969 Walter E. Mientka
Roger Weitzenkamp
+ Mean-value theorems for multiplicative functions on Beurling’s generalized integers (I) 2005 Wenbin Zhang
+ PDF Chat On the distribution of numbers of the form<i>σ</i>(<i>n</i>)<i>∕n</i>and on some related questions 1974 Paul Erdös