Weak type (1,1) estimates for a class of discrete rough maximal functions

Type: Article

Publication Date: 2007-01-01

Citations: 26

DOI: https://doi.org/10.4310/mrl.2007.v14.n2.a6

Abstract

We prove weak type (1, 1) estimate for the maximal function associated with the sequence [m α ], 1 < α < 1 + 1 1000 .As a consequence, the sequence [m α ] is universally L 1 -good.

Locations

  • Mathematical Research Letters - View - PDF

Similar Works

Action Title Year Authors
+ Weak type (1, 1) inequalities for discrete rough maximal functions 2013 Mariusz Mirek
+ Weak type (1, 1) inequalities for discrete rough maximal functions 2013 Mariusz Mirek
+ PDF Chat Weak type (1, 1) inequalities for discrete rough maximal functions 2015 Mariusz Mirek
+ Weak type (1,1) estimates for some integral operators related to rough maximal functions 1996 Peter Sjögren
Fernando Soria
+ Weak Type (1, 1) Bounds for Maximal Functions with Rough Kernels 2025 Yanping Chen
Feng Liu
Huoxiong Wu
+ On Rough Maximal Operators and Weak Type (1,1) Estimates for Convolutions 1992 Peter Sjögren
+ Weak type (1, 1) bounds for rough operators, II 1988 Michael Christ
J.-L. Rubio de Francia
+ Weak (1,1) Estimates for Littlewood-Paley Functions with Rough Kernels 2000 Shūichi Satō
+ Weak type $(1, 1)$ estimates for maximal functions along $1$-regular sequences of integers 2020 Bartosz Trojan
+ Weak type $(1, 1)$ estimates for maximal functions along $1$-regular sequences of integers. 2020 Bartosz Trojan
+ On maximal function of discrete rough truncated Hilbert transforms 2021 Maciej Paluszyński
Jacek Zienkiewicz
+ PDF Chat On maximal function of discrete rough truncated Hilbert transforms 2023 Maciej Paluszyński
Jacek Zienkiewicz
+ PDF Chat Weak type $(1,1)$ estimates for Marcinkiewicz integrals with rough kernels 2001 Dashan Fan
Shūichi Satō
+ Weighted weak-type <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mo stretchy="false">(</mml:mo><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math> estimates via Rubio de Francia extrapolation 2015 Marı́a J. Carro
Loukas Grafakos
Javier Soria
+ Weighted Weak-Type (1, 1) Inequalities for Rough Operators 1989 Steve Hofmann
+ PDF Chat Weak-Type (1,1) Inequality for Discrete Maximal Functions and Pointwise Ergodic Theorems Along Thin Arithmetic Sets 2024 Leonidas Daskalakis
+ On Sharpness of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>L</mml:mi></mml:math> log <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>L</mml:mi></mml:math> Criterion for Weak Type <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>(</mml:mo><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mn>1</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:math> boundedness of rough operators 2024 Ankit Bhojak
+ PDF Chat Lower bounds for the weak type (1, 1) estimate for the maximal function associated to cubes in high dimensions 2013 А. С. Яковлев
Jan-Olov Strömberg
+ WEAK BOUNDS FOR ROUGH SQUARE AND MAXIMAL OPERATORS 2001 YingYiming
YaoKui
+ Weak bounds for rough square and maximal operators 2001 Yiming Ying
Kui Yao