Type: Article
Publication Date: 1995-01-01
Citations: 1
DOI: https://doi.org/10.1090/s0002-9947-1995-1321581-2
For each differentiable function <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding="application/x-tex">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on the unit circle, the Kechris-Woodin rank measures the failure of continuity of the derivative function <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f prime"> <mml:semantics> <mml:msup> <mml:mi>f</mml:mi> <mml:mo>′</mml:mo> </mml:msup> <mml:annotation encoding="application/x-tex">f’</mml:annotation> </mml:semantics> </mml:math> </inline-formula> while the Zalcwasser rank measures how close the Fourier series of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding="application/x-tex">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is to being a uniformly convergent series. We show that the Kechris-Woodin rank is finer than the Zalcwasser rank. Roughly speaking, small ranks mean the function is well behaved and big ranks imply bad behavior. For each countable ordinal, we explicitly construct a continuous function with everywhere convergent Fourier series such that the Zalcwasser rank of the function is bigger than the ordinal.
Action | Title | Year | Authors |
---|---|---|---|
+ | Mathematical Preliminaries | 2021 |
Shizuhiko Nishisato Eric J. Beh Rosaria Lombardo José G. Clavel |
+ | The Mathematical Association | 1930 | |
+ | The Mathematical Association | 1962 | |
+ PDF Chat | The Mathematical Association | 1931 | |
+ PDF Chat | The Mathematical Association | 1956 | |
+ | The Mathematical Association | 1962 | |
+ PDF Chat | The Mathematical Association | 2001 | |
+ | The Mathematical Association | 1956 | |
+ | The Mathematical Association | 1933 | |
+ | The Mathematical Association | 1960 | |
+ | The Mathematical Association | 1935 | |
+ | The Mathematical Association | 1944 | |
+ | The Mathematical Association | 1925 | |
+ | The Mathematical Association | 2018 | |
+ | The Mathematical Association | 1953 | |
+ | The Mathematical Association | 1966 | |
+ | The Mathematical Association | 1932 | |
+ PDF Chat | The Mathematical Association | 1930 | |
+ | The Mathematical Association | 1928 | |
+ | The Mathematical Association | 2017 |
Action | Title | Year | Authors |
---|---|---|---|
+ PDF Chat | On the Denjoy rank, the Kechris-Woodin rank and the Zalcwasser rank | 1997 |
Haseo Ki |