Comparison theorems for eigenvalue problems for 𝑛th order differential equations

Type: Article

Publication Date: 1988-01-01

Citations: 17

DOI: https://doi.org/10.1090/s0002-9939-1988-0946624-9

Abstract

We give a comparison theorem for eigenvalues for a <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis k comma n minus k right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> <mml:mo>βˆ’<!-- βˆ’ --></mml:mo> <mml:mi>k</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(k,n - k)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-conjugate boundary value problem for the systems <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis negative 1 right-parenthesis Superscript n minus k Baseline upper L y equals lamda upper P left-parenthesis t right-parenthesis y"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">(</mml:mo> <mml:mo>βˆ’<!-- βˆ’ --></mml:mo> <mml:mn>1</mml:mn> <mml:msup> <mml:mo stretchy="false">)</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>n</mml:mi> <mml:mo>βˆ’<!-- βˆ’ --></mml:mo> <mml:mi>k</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> <mml:mi>L</mml:mi> <mml:mi>y</mml:mi> <mml:mo>=</mml:mo> <mml:mi>Ξ»<!-- Ξ» --></mml:mi> <mml:mi>P</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mi>y</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">{( - 1)^{n - k}}Ly = \lambda P(t)y</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis negative 1 right-parenthesis Superscript n minus k Baseline upper L z equals normal upper Lamda upper Q left-parenthesis t right-parenthesis z"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">(</mml:mo> <mml:mo>βˆ’<!-- βˆ’ --></mml:mo> <mml:mn>1</mml:mn> <mml:msup> <mml:mo stretchy="false">)</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>n</mml:mi> <mml:mo>βˆ’<!-- βˆ’ --></mml:mo> <mml:mi>k</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> <mml:mi>L</mml:mi> <mml:mi>z</mml:mi> <mml:mo>=</mml:mo> <mml:mi mathvariant="normal">Ξ›<!-- Ξ› --></mml:mi> <mml:mi>Q</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mi>z</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">{( - 1)^{n - k}}Lz = \Lambda Q(t)z</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper P left-parenthesis t right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>P</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">P(t)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper Q left-parenthesis t right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>Q</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">Q(t)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are continuous <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="m times m"> <mml:semantics> <mml:mrow> <mml:mi>m</mml:mi> <mml:mo>Γ—<!-- Γ— --></mml:mo> <mml:mi>m</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">m \times m</mml:annotation> </mml:semantics> </mml:math> </inline-formula> matrix functions. We assume that the corresponding scalar equation <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L x equals 0"> <mml:semantics> <mml:mrow> <mml:mi>L</mml:mi> <mml:mi>x</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">Lx = 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis j comma n minus j right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>j</mml:mi> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> <mml:mo>βˆ’<!-- βˆ’ --></mml:mo> <mml:mi>j</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(j,n - j)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-disconjugate for <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="k minus 1 less-than-or-equal-to j less-than-or-equal-to n minus 1"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>βˆ’<!-- βˆ’ --></mml:mo> <mml:mn>1</mml:mn> <mml:mo>≀<!-- ≀ --></mml:mo> <mml:mi>j</mml:mi> <mml:mo>≀<!-- ≀ --></mml:mo> <mml:mi>n</mml:mi> <mml:mo>βˆ’<!-- βˆ’ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">k - 1 \leq j \leq n - 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. A special case of this is when <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L x equals 0"> <mml:semantics> <mml:mrow> <mml:mi>L</mml:mi> <mml:mi>x</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">Lx = 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is disconjugate; our results are new even in this case.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Comparison of eigenvalues associated with linear differential equations of arbitrary order 1976 Rodney D. Gentry
Curtis C. Travis
+ PDF Chat On the nonlinear eigenvalue problem Δ𝑒+πœ†π‘’^{𝑒}=0 1988 Takashi Suzuki
Ken’ichi Nagasaki
+ PDF Chat On eigenvalue problems of 𝑝-Laplacian with Neumann boundary conditions 1990 Yin Xi Huang
+ PDF Chat Estimates for eigenfunctions and eigenvalues of nonlinear elliptic problems 1984 Chris Cosner
+ PDF Chat Eigenvalues of a Sturm-Liouville problem and inequalities of Lyapunov type 1998 Chung-Wei Ha
+ Comparison Theorems for Eigenvalue Problems for nth Order Differential Equations 1988 Darrel Hankerson
Allan Peterson
+ Eigenvalue problems 1979 Gaetano Fichera
+ An eigenvalue problem for quadratic pencils of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:mi>q</mml:mi></mml:math>-difference equations and its applications 2008 Adil HΓΌseynov
Elgiz Bairamov
+ PDF Chat Comparison of eigenvalues for linear differential equations of order 2𝑛 1973 Curtis C. Travis
+ Solution of Eigenvalue Problems 1958 Richard G. Cooke
+ Solution of Equation Systems and Eigenvalue Problems 2012 Rolf Kindmann
Matthias Kraus
+ Eigenvalue and Stability Problems 1985
+ PDF Chat On the existence of eigenvalues of differential operators dependent on a parameter 1980 Sh. Strelitz
Shoshana Abramovich
+ Positive eigenvalues of second order boundary value problems and a theorem of M. G. Krein 2002 Stephen Clark
Don Hinton
+ PDF Chat Principal eigenvalues for problems with indefinite weight function on 𝑅ⁿ 1990 K.J. Brown
Chris Cosner
Jacqueline Fleckinger
+ Characterization of eigenvalues for difference Equations subject to Lidstone conditions 2002 Patricia J. Y. Wong
Ravi P. Agarwal
+ Numerical Methods for Eigenvalue Problems 2020 Federico Milano
Ioannis Dassios
Muyang Liu
Georgios Tzounas
+ Numerical methods for eigenvalue problems 2003 Robert Plato
+ Eigenvalue Enclosures for Ordinary Differential Equations 2012 H. C. Heinrich Behnke
+ EIGENVALUE ENCLOSURES FOR ORDINARY DIFFERENTIAL EQUATIONS 2001 H. C. Heinrich Behnke