Magnetic order and paramagnetic phases in the quantum<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>J</mml:mi><mml:mn>1</mml:mn></mml:msub></mml:math>-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>J</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math>-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>J</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math>honeycomb model

Type: Article

Publication Date: 2011-07-25

Citations: 119

DOI: https://doi.org/10.1103/physrevb.84.014417

Abstract

Recent work shows that a quantum spin liquid can arise in realistic fermionic models on a honeycomb lattice. We study the quantum spin-1/2 Heisenberg honeycomb model, considering couplings ${J}_{1}$, ${J}_{2}$, and ${J}_{3}$ up to third nearest neighbors. We use an unbiased pseudofermion functional renormalization-group method to compute the magnetic susceptibility and to determine the ordered and disordered states of the model. Aside from antiferromagnetic-, collinear-, and spiral-order domains, we find a large paramagnetic region at intermediate ${J}_{2}$ coupling. For larger ${J}_{2}$ within this domain, we find a strong tendency for staggered dimer ordering, while the remaining paramagnetic regime for low ${J}_{2}$ shows only weak plaquette and staggered dimer responses. We suggest this regime to be a promising region for looking for quantum spin-liquid states when charge fluctuations would be included.

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View
  • Physical Review B - View

Similar Works

Action Title Year Authors
+ PDF Chat Quantum phase diagram of the spin-1<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>J</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>−</mml:mo><mml:msub><mml:mi>J</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>Heisenberg model on the honeycomb lattice 2015 Shou-Shu Gong
Wei Zhu
D. N. Sheng
+ PDF Chat Phase diagram of a frustrated Heisenberg antiferromagnet on the honeycomb lattice: The<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>J</mml:mi><mml:mn>1</mml:mn></mml:msub></mml:math>-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>J</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math>-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>J</mml:mi><mml:mn>3</mml:mn></mml:… 2012 P. H. Y. Li
R. F. Bishop
D. J. J. Farnell
C. E. Campbell
+ PDF Chat Phase diagram of the spin-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mfrac><mml:mn>1</mml:mn><mml:mn>2</mml:mn></mml:mfrac></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>J</mml:mi><mml:mn>1</mml:mn></mml:msub></mml:math>-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>J</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math>Heisenberg model on a honeycomb lattice 2013 Shou-Shu Gong
D. N. Sheng
Olexei I. Motrunich
Matthew P. A. Fisher
+ PDF Chat Phase diagram of the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mi>J</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>−</mml:mo><mml:msub><mml:mi>J</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo>−</mml:mo><mml:msub><mml:mi>J</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:mrow></mml:math>Heisenberg model on the honeycomb lattice: A series expansion study 2011 J. Oitmaa
Rajiv R. P. Singh
+ PDF Chat Spin liquid ground state of the spin-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mfrac><mml:mn>1</mml:mn><mml:mn>2</mml:mn></mml:mfrac></mml:math>square<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>J</mml:mi><mml:mn>1</mml:mn></mml:msub></mml:math>-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>J</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math>Heisenberg model 2012 Hong‐Chen Jiang
Hong Yao
Leon Balents
+ PDF Chat Exotic disordered phases in the quantum<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>J</mml:mi><mml:mn>1</mml:mn></mml:msub></mml:math>-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>J</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math>model on the honeycomb lattice 2013 Hao Zhang
C. A. Lamas
+ PDF Chat Ground-state phases of the spin-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>1</mml:mn><mml:mrow><mml:msub><mml:mi>J</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mtext>−</mml:mtext><mml:msub><mml:mi>J</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>Heisenberg antiferromagnet on the honeycomb lattice 2016 P. H. Y. Li
R. F. Bishop
+ PDF Chat Frustrated honeycomb-bilayer Heisenberg antiferromagnet: The spin- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mfrac><mml:mn>1</mml:mn><mml:mn>2</mml:mn></mml:mfrac></mml:math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>J</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mtext>−</mml:mtext><mml:msub><mml:mi>J</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mtext>−</mml:mtext><mml:msubsup><mml:mi>J</mml:mi><mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:… 2017 R. F. Bishop
P. H. Y. Li
+ PDF Chat Quantum phases in the frustrated Heisenberg model on the bilayer honeycomb lattice 2014 Hao Zhang
Marcelo Arlego
C. A. Lamas
+ PDF Chat Phase diagram of the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>J</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mtext>−</mml:mtext><mml:msub><mml:mi>J</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>Heisenberg model on the kagome lattice 2015 Fabian Kolley
Stefan Depenbrock
Ian P. McCulloch
Ulrich Schollwöck
Vincenzo Alba
+ PDF Chat Intertwining SU( <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>N</mml:mi></mml:math> ) symmetry and frustration on a honeycomb lattice 2022 Xu-Ping Yao
Rui Leonard Luo
Gang Chen
+ PDF Chat Weak Plaquette Valence Bond Order in the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>S</mml:mi><mml:mo mathvariant="bold">=</mml:mo><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:math>Honeycomb<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>J</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo mathvariant="bold">−</mml:mo><mml:msub><mml:mi>J</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math>Heisenberg Model 2013 Zhenyue Zhu
David A. Huse
Steven R. White
+ PDF Chat Nature of quantum spin liquids of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>S</mml:mi><mml:mo>=</mml:mo><mml:mfrac><mml:mn>1</mml:mn><mml:mn>2</mml:mn></mml:mfrac></mml:mrow></mml:math> Heisenberg antiferromagnet on the triangular lattice: A parallel DMRG study 2023 Yi‐Fan Jiang
Hong‐Chen Jiang
+ PDF Chat Complete phase diagram of the spin-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mfrac><mml:mn>1</mml:mn><mml:mn>2</mml:mn></mml:mfrac></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>J</mml:mi><mml:mn>1</mml:mn></mml:msub></mml:math>-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>J</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math>-<mml:math xmlns:mml="http://www.w3… 2012 R. F. Bishop
P. H. Y. Li
+ PDF Chat Competing spin-liquid states in the spin-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mfrac><mml:mn>1</mml:mn><mml:mn>2</mml:mn></mml:mfrac></mml:math>Heisenberg model on the triangular lattice 2015 Wen-Jun Hu
Shou-Shu Gong
Wei Zhu
D. N. Sheng
+ PDF Chat Phase diagram of the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mtext>spin</mml:mtext><mml:mo>−</mml:mo><mml:mfrac><mml:mn>1</mml:mn><mml:mn>2</mml:mn></mml:mfrac></mml:math>triangular<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>J</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>−</mml:mo><mml:msub><mml:mi>J</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>Heisenberg model on a three-leg cylinder 2015 S. N. Saadatmand
B. J. Powell
Ian P. McCulloch
+ PDF Chat Phase diagram of a frustrated quantum antiferromagnet on the honeycomb lattice: Magnetic order versus valence-bond crystal formation 2011 A. Fabricio Albuquerque
David Schwandt
Balázs Hetényi
Sylvain Capponi
Matthieu Mambrini
Andreas M. Läuchli
+ PDF Chat Phase diagram of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>J</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mtext>−</mml:mtext><mml:msub><mml:mi>J</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math> quantum Heisenberg model for arbitrary spin 2024 Andreas Rückriegel
Dmytro Tarasevych
Peter Kopietz
+ Frustrated Heisenberg antiferromagnet on the honeycomb lattice with spin quantum number<i>s</i>≥ 1 2016 P. H. Y. Li
R. F. Bishop
C. E. Campbell
+ PDF Chat Ground-state phases of the frustrated spin-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mfrac><mml:mn>1</mml:mn><mml:mn>2</mml:mn></mml:mfrac></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>J</mml:mi><mml:mn>1</mml:mn></mml:msub></mml:math>–<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>J</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math>–<mml:math xmlns:mml="http… 2012 P. H. Y. Li
R. F. Bishop
D. J. J. Farnell
Johannes Richter
C. E. Campbell

Works That Cite This (109)

Action Title Year Authors
+ PDF Chat Quantum phase diagram of the spin-1<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>J</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>−</mml:mo><mml:msub><mml:mi>J</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>Heisenberg model on the honeycomb lattice 2015 Shou-Shu Gong
Wei Zhu
D. N. Sheng
+ Half-filled stripe to N$\acute e$el antiferromagnetism transition in the $t'$-Hubbard model on honeycomb lattice 2023 Yang Shen
Mingpu Qin
+ PDF Chat Spin liquid nature in the Heisenberg<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>J</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>−</mml:mo><mml:msub><mml:mi>J</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>triangular antiferromagnet 2016 Yasir Iqbal
Wen-Jun Hu
Ronny Thomale
Didier Poilblanc
Federico Becca
+ PDF Chat Topological Order and Semions in a Strongly Correlated Quantum Spin Hall Insulator 2012 Andreas Rüegg
Gregory A. Fiete
+ PDF Chat Plaquette order and deconfined quantum critical point in the spin-1 bilinear-biquadratic Heisenberg model on the honeycomb lattice 2012 Hui‐Hai Zhao
Cenke Xu
Qiaoni Chen
Z. C. Wei
Mingpu Qin
Guangming Zhang
Tao Xiang
+ PDF Chat Exotic disordered phases in the quantum<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>J</mml:mi><mml:mn>1</mml:mn></mml:msub></mml:math>-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>J</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math>model on the honeycomb lattice 2013 Hao Zhang
C. A. Lamas
+ PDF Chat Valence-bond crystalline order in the<i>s</i>= 1/2<i>J</i><sub>1</sub>–<i>J</i><sub>2</sub>model on the honeycomb lattice 2013 R. F. Bishop
P. H. Y. Li
C. E. Campbell
+ PDF Chat Emergence and stability of spin-valley entangled quantum liquids in moiré heterostructures 2020 Dominik Kiese
Finn Lasse Buessen
Ciarán Hickey
Simon Trebst
Michael M. Scherer
+ PDF Chat Role of quantum fluctuations on spin liquids and ordered phases in the Heisenberg model on the honeycomb lattice 2018 Jaime Merino
Arnaud Ralko
+ PDF Chat Classical Spin Liquid on the Maximally Frustrated Honeycomb Lattice 2016 J. Rehn
Arnab Sen
Kedar Damle
R. Moessner

Works Cited by This (20)

Action Title Year Authors
+ PDF Chat SU(2) gauge theory of the Hubbard model and application to the honeycomb lattice 2007 Michael Hermele
+ PDF Chat Quantum spin Hall, triplet superconductor, and topological liquids on the honeycomb lattice 2011 Cenke Xu
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mi>J</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mtext>−</mml:mtext><mml:msub><mml:mi>J</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>frustrated two-dimensional Heisenberg model: Random phase approximation and functional renormalization group 2010 Johannes Reuther
P. Wölfle
+ PDF Chat Functional renormalization group for the anisotropic triangular antiferromagnet 2011 Johannes Reuther
Ronny Thomale
+ PDF Chat An investigation of the quantum J 1 - J 2 - J 3 model on the honeycomb lattice 2001 J.-B. Fouet
Philippe Sindzingre
C. Lhuillier
+ PDF Chat Effective quantum dimer model for the kagome Heisenberg antiferromagnet: Nearby quantum critical point and hidden degeneracy 2010 Didier Poilblanc
Matthieu Mambrini
David Schwandt
+ The ground states of the classical heisenberg and planar models on the triangular and plane hexagonal lattices 1986 Shigetoshi Katsura
Tsugio Ide
Tohru Morita
+ PDF Chat Schwinger boson mean field theories of spin liquid states on a honeycomb lattice: Projective symmetry group analysis and critical field theory 2010 Fa Wang
+ PDF Chat A functional renormalization group approach to zero-dimensional interacting systems 2004 R Hedden
V. Meden
Th. Pruschke
K. Schönhammer
+ PDF Chat Frustrated honeycomb Heisenberg antiferromagnet: A Schwinger-boson approach 1994 Ann E. Mattsson
Per Fröjdh
Torbjörn Einarsson