The Banach algebra generated by a -semigroup

Type: Article

Publication Date: 2006-03-31

Citations: 5

DOI: https://doi.org/10.1016/j.crma.2006.02.017

Abstract

Let T={T(t)}t⩾0 be a bounded C0-semigroup on a Banach space with generator A. We define AT as the closure with respect to the operator-norm topology of the set {fˆ(T):f∈L1(R+)}, where fˆ(T)=∫0∞f(t)T(t)dt is the Laplace transform of f∈L1(R+) with respect to the semigroup T. Then AT is a commutative Banach algebra. It is shown that if the unitary spectrum σ(A)∩iR of A is at most countable, then the Gelfand transform of S∈AT vanishes on σ(A)∩iR if and only if, limt→∞‖T(t)S‖=0. Some applications to the semisimplicity problem are given. To cite this article: H. Mustafayev, C. R. Acad. Sci. Paris, Ser. I 342 (2006). Soit T={T(t)}t⩾0 un C0-semigroupe borné dans un espace de Banach par générateur A. Nous définissons AT comme la clotûre par rapport à la topologie de la norme opérateur de l'ensemble {fˆ(T):f∈L1(R+)}, où fˆ(T)=∫0∞f(t)T(t)dt est la transformée de Laplace de f∈L1(R+) par rapport au semigroupe T. Alors AT est une algèbre de Banach commutative. Dans cet article il est montré que, si la spectre unitaire σ(A)∩iR de A est au plus dénombrable, alors la transformée de Gelfand de S∈AT s'annule sur σ(A)∩iR si et seulement si limt→∞‖T(t)S‖=0. Nous donnons aussi quelques applications de la semisimplicité du problème. Pour citer cet article : H. Mustafayev, C. R. Acad. Sci. Paris, Ser. I 342 (2006).

Locations

  • Comptes Rendus Mathématique - View - PDF

Similar Works

Action Title Year Authors
+ Spectrum of an Operator 2018 Piotr M. Sołtan
+ Theory of Analytic Semigroups 1995 Kazuaki Taira
+ C0-semigroups norm continuous at infinity 1996 Juan Luis Fernández‐Martínez
José M. Mazón
+ A Semigroup $$\boldsymbol{C}^{\mathbf{*}}$$-algebra for a Semidirect Product of Semigroups 2024 E. V. Lipacheva
+ Banach algebras generated by a bounded linear operator 1955 Minoru Tomita
+ A Commutative Banach Algebra of Functions of Bounded Variation 1980 A. M. Russell
+ Semigroups generated by a convolution equation 1984 Olof J. Staffans
+ $A$-spectral permanence property for $C^*$-algebras 2023 Mohamed Mabrouk
Ali Zamani
+ PDF Chat $$(\alpha ,\beta )$$-A-Normal operators in semi-Hilbertian spaces 2019 Abelkader Benali
Sid Ahmed Ould Ahmed Mahmoud
+ Theory of Analytic Semigroups 2016 Kazuaki Taira
+ A nil algebra of bounded operators on Hilbert space with semisimple norm closure 1986 Donald W. Hadwin
Eric Nordgren
M. Radjabalipour
Heydar Radjavi
Peter Rosenthal
+ PDF Chat Automatic continuity of operator semigroups in the Calkin algebra 2024 Tomasz Kochanek
+ Seminormed $\ast$-subalgebras of $\ell^{\infty}(X)$ 2015 Mahmood Alaghmandan
Mehdi Ghasemi
+ Seminormed $\ast$-subalgebras of $\ell^{\infty}(X)$ 2015 Mahmood Alaghmandan
Mehdi Ghasemi
+ Ces\'aro sums and algebra homomorphisms of bounded operators 2015 Luciano Abadías
Carlos Lizama
Pedro J. Miana
M. Pilar Velasco
+ Spectral radius of semi-Hilbertian space operators and its applications 2019 Kais Feki
+ Spectral radius of semi-Hilbertian space operators and its applications 2019 Kais Feki
+ Cesáro sums and algebra homomorphisms of bounded operators 2015 Luciano Abadías
Carlos Lizama
Pedro J. Miana
M. Pilar Velasco
+ SEMIGROUPS GENERATED BY BOUNDED OPERATORS 1994
+ PDF Chat Spectral radius of semi-Hilbertian space operators and its applications 2020 Kais Feki