Counting Occurrences of 132 in a Permutation

Type: Article

Publication Date: 2002-02-01

Citations: 52

DOI: https://doi.org/10.1006/aama.2001.0773

Locations

  • Advances in Applied Mathematics - View
  • arXiv (Cornell University) - PDF

Similar Works

Action Title Year Authors
+ Counting occurences of 132 in a permutation 2001 Toufik Mansour
Alek Vainshtein
+ Counting occurrences of 132 in an even permutation 2002 Toufik Mansour
+ PDF Chat Counting occurrences of132in an even permutation 2004 Toufik Mansour
+ Counting occurrences of 231 in an involution 2006 Toufik Mansour
Sherry H. F. Yan
Laura L. M. Yang
+ Counting occurrences of 3412 in an involution 2004 Toufik Mansour
+ Restricted 132-avoiding permutations 2000 Toufik Mansour
Alek Vainshtein
+ Enumeration of permutations by number of alternating runs 2011 Shi-Mei Ma
+ Restricted 132-Avoiding Permutations 2001 Toufik Mansour
Alek Vainshtein
+ PDF Chat Counting 1324-Avoiding Permutations 2003 Darko Marinov
Radoš Radoičić
+ A new record for $1324$-avoiding permutations 2014 Miklós Bóna
+ A new record for $1324$-avoiding permutations 2014 Miklós Bóna
+ PDF Chat A new record for 1324-avoiding permutations 2014 Miklós Bóna
+ PDF Chat Counting $1324$, $4231$-Avoiding Permutations 2009 Michael Albert
M. D. Atkinson
Vincent Vatter
+ Enumeration of permutations by number of alternating runs 2013 Shi-Mei Ma
+ PDF Chat A New Upper Bound for 1324-Avoiding Permutations 2014 Miklós Bóna
+ Counting inversion sequences by parity successions and runs 2023 Toufik Mansour
Mark Shattuck
+ The Number of Permutations With A Prescribed Number of 132 and 123 Patterns 1999 Shalosh B. Ekhad
Aaron Robertson
Doron Zeilberger
+ Restricted even permutations and Chebyshev polynomials 2003 Toufik Mansour
+ A reciprocity method for computing generating functions over the set of permutations with no consecutive occurrence of a permutation pattern 2013 Miles Eli Jones
Jeffrey B. Remmel
+ Permutations with one or two 132-subsequences 1998 Miklós Bóna