Zero-measure Cantor spectrum for Schrödinger operators with low-complexity potentials

Type: Article

Publication Date: 2005-12-15

Citations: 28

DOI: https://doi.org/10.1016/j.matpur.2005.11.002

Locations

  • CaltechAUTHORS (California Institute of Technology) - View - PDF
  • Journal de Mathématiques Pures et Appliquées - View

Similar Works

Action Title Year Authors
+ PDF Chat Linearly Recurrent Circle Map Subshifts and an Application to Schrödinger Operators 2002 Boris Adamczewski
David Damanik
+ Reducibility of finitely differentiable quasi-periodic cocycles and its spectral applications 2017 Ao Cai
Lingrui Ge
+ Zero measure Cantor spectra for continuum one-dimensional quasicrystals 2014 Daniel Lenz
Christian Seifert
Peter Stollmann
+ Zero measure Cantor spectra for continuum one-dimensional quasicrystals 2013 Daniel Lenz
Christian Seifert
Peter Stollmann
+ PDF Chat Zero measure spectrum for multi-frequency Schrödinger operators 2022 Jon Chaika
David Damanik
Jake Fillman
Philipp Gohlke
+ COMBINATORIAL PROPERTIES OF ARNOUX–RAUZY SUBSHIFTS AND APPLICATIONS TO SCHRÖDINGER OPERATORS 2003 David Damanik
Luca Q. Zamboni
+ Zero Measure Spectrum for Multi-Frequency Schrödinger Operators 2020 Jon Chaika
David Damanik
Jake Fillman
Philipp Gohlke
+ Zero measure Cantor spectra for continuum one-dimensional quasicrystals 2013 Daniel Lenz
Christian Seifert
Peter Stollmann
+ Cantor spectrum for a class of $C^2$ quasiperiodic Schrödinger operators 2014 Yiqian Wang
Zhenghe Zhang
+ Etude spectrale d'un opérateur de schrödinger périodique avec champ magnétique fort en dimension deux 2006 Andrei Eckstein
+ PDF Chat Continuum Schrödinger Operators Associated With Aperiodic Subshifts 2013 David Damanik
Jake Fillman
Anton Gorodetski
+ Arnoux-Rauzy Subshifts: Linear Recurrence, Powers, and Palindromes 2002 David Damanik
Luca Q. Zamboni
+ PDF Chat Cantor Spectrum for a Class of $C^2$ Quasiperiodic Schrödinger Operators 2016 Yiqian Wang
Zhenghe Zhang
+ Realisation et spectre d'operateurs de schrodinger et de klein-gordon avec des potentiels irreguliers 1995 Mba Yebe
Judes Thaddee
+ PDF Chat Multidimensional Schrödinger operators whose spectrum features a half-line and a Cantor set 2021 David Damanik
Jake Fillman
Anton Gorodetski
+ PDF Chat None 2022 Van Cyr
Bryna Kra
+ PDF Chat Dimension of the spectrum of one-dimensional discrete Schrödinger operators with Sturmian potentials 2007 Qinghui Liu
Jacques Peyrière
Zhi‐Ying Wen
+ Multidimensional Schrödinger Operators Whose Spectrum Features a Half-Line and a Cantor Set 2020 David Damanik
Jake Fillman
Anton Gorodetski
+ Suites de faible complexité et fractals 2002 Bo Tan
+ Multidimensional Schr\"odinger Operators Whose Spectrum Features a Half-Line and a Cantor Set 2020 David Damanik
Jake Fillman
Anton Gorodetski