On the Noncommutative Neutrix Product of Distributions

Type: Article

Publication Date: 2007-01-01

Citations: 0

DOI: https://doi.org/10.1155/2007/81907

Abstract

Let<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="E1"><mml:mi>f</mml:mi></mml:math>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="E2"><mml:mi>g</mml:mi></mml:math>be distributions and let<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="E3"><mml:mrow><mml:msub><mml:mi>g</mml:mi><mml:mi>n</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mo stretchy="false">(</mml:mo><mml:mi>g</mml:mi><mml:mo>*</mml:mo><mml:msub><mml:mi>δ</mml:mi><mml:mi>n</mml:mi></mml:msub><mml:mo stretchy="false">)</mml:mo><mml:mo stretchy="false">(</mml:mo><mml:mi>x</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:math>, where<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="E4"><mml:mrow><mml:msub><mml:mi>δ</mml:mi><mml:mi>n</mml:mi></mml:msub><mml:mo stretchy="false">(</mml:mo><mml:mi>x</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:math>is a certain sequence converging to the Dirac-delta function<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="E5"><mml:mrow><mml:mi>δ</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>x</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:math>. The noncommutative neutrix product<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="E6"><mml:mrow><mml:mi>f</mml:mi><mml:mo>∘</mml:mo><mml:mi>g</mml:mi></mml:mrow></mml:math>of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="E7"><mml:mi>f</mml:mi></mml:math>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="E8"><mml:mi>g</mml:mi></mml:math>is defined to be the neutrix limit of the sequence<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="E9"><mml:mrow><mml:mo>{</mml:mo><mml:mi>f</mml:mi><mml:msub><mml:mi>g</mml:mi><mml:mi>n</mml:mi></mml:msub><mml:mo>}</mml:mo></mml:mrow></mml:math>, provided the limit<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="E10"><mml:mi>h</mml:mi></mml:math>exists in the sense that<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="E11"><mml:mrow><mml:mtext>N‐</mml:mtext><mml:msub><mml:mrow><mml:mo>lim</mml:mo></mml:mrow><mml:mrow><mml:mi>n</mml:mi><mml:mo>→</mml:mo><mml:mi>∞</mml:mi></mml:mrow></mml:msub><mml:mrow><mml:mo>〈</mml:mo><mml:mrow><mml:mi>f</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:msub><mml:mi>g</mml:mi><mml:mi>n</mml:mi></mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mo>,</mml:mo><mml:mi>φ</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow><mml:mo>〉</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mo>〈</mml:mo><mml:mrow><mml:mi>h</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mo>,</mml:mo><mml:mi>φ</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow><mml:mo>〉</mml:mo></mml:mrow></mml:mrow></mml:math>, for all test functions in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="E12"><mml:mi>𝒟</mml:mi></mml:math>. In this paper, using the concept of the neutrix limit due to van der Corput (1960), the noncommutative neutrix products<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="E13"><mml:mrow><mml:msubsup><mml:mi>x</mml:mi><mml:mo>+</mml:mo><mml:mi>r</mml:mi></mml:msubsup><mml:mo>ln</mml:mo><mml:msub><mml:mi>x</mml:mi><mml:mo>+</mml:mo></mml:msub><mml:mo>∘</mml:mo><mml:msubsup><mml:mi>x</mml:mi><mml:mo>−</mml:mo><mml:mrow><mml:mo>−</mml:mo><mml:mi>r</mml:mi><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msubsup><mml:mo>ln</mml:mo><mml:msub><mml:mi>x</mml:mi><mml:mo>−</mml:mo></mml:msub></mml:mrow></mml:math>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="E14"><mml:mrow><mml:msubsup><mml:mi>x</mml:mi><mml:mo>−</mml:mo><mml:mrow><mml:mo>−</mml:mo><mml:mi>r</mml:mi><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msubsup><mml:mo>ln</mml:mo><mml:msub><mml:mi>x</mml:mi><mml:mo>−</mml:mo></mml:msub><mml:mo>∘</mml:mo><mml:msubsup><mml:mi>x</mml:mi><mml:mo>+</mml:mo><mml:mi>r</mml:mi></mml:msubsup><mml:mo>ln</mml:mo><mml:msub><mml:mi>x</mml:mi><mml:mo>+</mml:mo></mml:msub></mml:mrow></mml:math>are proved to exist and are evaluated for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="E15"><mml:mrow><mml:mi>r</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:mo>…</mml:mo></mml:mrow></mml:math>. It is consequently seen that these two products are in fact equal.

Locations

  • Project Euclid (Cornell University) - View - PDF
  • Abstract and Applied Analysis - View - PDF

Similar Works

Action Title Year Authors
+ On the Non-Commutative Neutrix Product of the Distributions x+^λ and x^+μ 2006 Fisher
+ On the Non-commutative Neutrix Product of the Distributions $\delta ^{(r)}(x)$ and $x^{-s}\ln^m|x|$} 2024 Brian Fisher
İncı Ege
Emin Özçağ
+ A note on the non-commutative neutrix product of distributions 1999 Emin Özçağ
+ ON THE COMMUTATIVE NEUTRIX PRODUCT OF DISTRIBUTIONS 2015
+ Some results on the non-commutative neutrix product of distributions 2008 Brian Fisher
Kenan Taş
+ On the Non-Commutative Neutrix Product 1996 Adem Kılıçman
Brian Fisher
+ On the Non–Commutative Neutrix Product of the Distributions $$ x^{\lambda }_{ + } $$ and $$ x^{\mu }_{ + } $$ 2006 Brian Fisher
Kenan Taş
+ PDF Chat The neutrix convolution product in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="$Z^\prime(m)$" id="E1"><mml:msup><mml:mi>Z</mml:mi><mml:mo>′</mml:mo></mml:msup><mml:mrow><mml:mo>(</mml:mo><mml:mi>m</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math>and the exchange formula 1997 C. K. Li
E. L. Koh
+ Neutrices and the non-commutative neutrix product of distributions 1997 Brian Fisher
Adem Kılıçman
+ On the non-commutative neutrix product of the distributions<i>x</i><i><sup>r</sup></i>ln<i><sup>p</sup></i>|<i>x</i>| and<i>x</i><sup>−</sup><i><sup>s</sup></i> 2005 Brian Fisher
Kenan Taş
+ On the non-commutative neutrix product of the distributions<i>x</i><sup><i>r</i></sup>ln<sup><i>p</i></sup>|<i>x</i>| and<i>x</i><sup><i>s</i></sup>ln<sup><i>q</i></sup>|<i>x</i>| 2008 Brian Fisher
+ On the non-commutative neutrix product of Dirac-delta distribution with an infinitely differentiable function 2007 Emin Özçağ
Ümit Gülen
+ Results on the commutative neutrix convolution product of distributions 1993 Brian Fisher
Emin Özçağ
+ Some Results on the Non-Commutative Neutrix Product of 2000 Adem Kılıçman
Selangor Darul Ehsan
+ On the non-commutative neutrix product of the distributions and 2006 Brian Fisher
Kenan Taş
+ The noncommutative neutrix product of $x_{-}^{-s}\ln^mx_{-}$ and $x_{+}^{r}$ 2014 Mongkolsery Lin
Somsak Orankitjaroen
Brian Fisher
+ PDF Chat A Comparison on the Commutative Neutrix Products of Distributions 2003 Adem Kılıçman
+ Several results on the commutative neutrix product of distributions 2007 C. K. Li
+ A Theorem on the Commutative Neutrix Product of Distributions 2024 Brian Fisher
E. Öz ̧ça
Ümit Gülen
+ The neutrix distribution product $x^\lambda_+ \circ x^\mu_-$ 2022 Brian L. Fisher

Works That Cite This (0)

Action Title Year Authors