Large deviations for combinatorial distributions. I. Central limit theorems

Type: Article

Publication Date: 1996-02-01

Citations: 73

DOI: https://doi.org/10.1214/aoap/1034968075

Locations

  • Project Euclid (Cornell University) - View - PDF
  • The Annals of Applied Probability - View

Similar Works

Action Title Year Authors
+ Large deviations of combinatorial distributions. II. Local limit theorems 1998 Hsien‐Kuei Hwang
+ On Convergence Rates in the Central Limit Theorems for Combinatorial Structures 1998 Hsien‐Kuei Hwang
+ On the Probabilities of Large Deviations of Combinatorial Sums of Independent Random Variables That Satisfy the Linnik Condition 2023 А. Н. Фролов
+ Beyond the Central Limit theorem: Asymptotic Expansions and Pseudorandomness for Combinatorial Sums 2015 Anindya De
+ On large deviations for combinatorial sums 2019 А. Н. Фролов
+ On large deviations for combinatorial sums 2019 А. Н. Фролов
+ PDF Chat On probabilities of large deviations of combinatorial sums of independent random variables satisfying Linnik’s condition 2023 Аndrei N. Frolov
+ A robust quantitative local central limit theorem with applications to enumerative combinatorics and random combinatorial structures 2016 Stephen DeSalvo
Georg Menz
+ PDF Chat On large deviations for combinatorial sums 2021 А. Н. Фролов
+ Covering the large spectrum and generalized Riesz products 2015 James R. Lee
+ Covering the large spectrum and generalized Riesz products 2015 James R. Lee
+ PDF Chat Covering the Large Spectrum and Generalized Riesz Products 2017 James R. Lee
+ PDF Chat None 2002 N. N. Amosova
+ Cram\'er-type Large deviation and non-uniform central limit theorems in high dimensions 2018 Debapratim Banerjee
Arun Kumar Kuchibhotla
Somabha Mukherjee
+ Large deviations for distributions of sums of random variables: Markov chain method 2010 Вадим Роландович Фаталов
+ Limit Theorems of the Law of Large Numbers and Central Limit Theorem Types for Random Determinants 1990 Vyacheslav L. Girko
+ General theorems on large deviations for random vectors 2017 Римантас Рудзкис
Aleksej Bakshaev
+ 3. Cramér's Theorem 1984 S. R. S. Varadhan
+ An introduction to Benford's law 2015 Arno Berger
Theodore P. Hill
+ An Introduction to Benford's Law 2015 Arno Berger
Theodore P. Hill