Type: Review
Publication Date: 2013-09-30
Citations: 12
DOI: https://doi.org/10.7465/jkdi.2013.24.5.1077
High-dimensional data analysis arises from almost all scientific areas, evolving with development of computing skills, and has encouraged penalized estimations that play important roles in statistical learning. For the past years, various penalized estimations have been developed, and the least absolute shrinkage and selection operator (LASSO) proposed by Tibshirani (1996) has shown outstanding ability, earning the first place on the development of penalized estimation. In this paper, we first introduce a number of recent advances in high-dimensional data analysis using the LASSO. The topics include various statistical problems such as variable selection and grouped or structured variable selection under sparse high-dimensional linear regression models. Several unsupervised learning methods including inverse covariance matrix estimation are presented. In addition, we address further studies on new applications which may establish a guideline on how to use the LASSO for statistical challenges of high-dimensional data analysis.