A fully nonlinear equation for the flame front in a quasi-steady combustion model

Type: Article

Publication Date: 2010-01-01

Citations: 10

DOI: https://doi.org/10.3934/dcds.2010.27.1415

Locations

  • Discrete and Continuous Dynamical Systems - View
  • arXiv (Cornell University) - View - PDF
  • CiteSeer X (The Pennsylvania State University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF

Similar Works

Action Title Year Authors
+ A fully nonlinear equation for the flame front in a quasi-steady combustion model 2009 C. M. Brauner
J. Hulshof
Luca Lorenzi
G. Sivashinsky
+ Well-posedness and asymptotics of a coordinate-free model of flame fronts 2020 David M. Ambrose
Fazel Hadadifard
James Wright
+ Well-posedness and asymptotics of a coordinate-free model of flame fronts 2020 David M. Ambrose
Fazel Hadadifard
James Wright
+ Weakly nonlinear asymptotics of the kappa-theta model for cellular flames: the Q-S equation. 2005 Claude-Michel Brauner
Michael L. Frankel
Josephus Hulshof
Gregory Sivashinsky
+ PDF Chat On the κ - θ model of cellular flames: Existence in the large and asymptotics 2008 Claude-Michel Brauner
Michael L. Frankel
Josephus Hulshof
Alessandra Lunardi
G. I. Sivashinsky
+ Analysis of Kuramoto-Sivashinsky Model of Flame/Smoldering Front by Means of Curvature Driven Flow 2020 Miroslav Kolář
Shunsuke Kobayashi
Yasuhide Uegata
Shigetoshi Yazaki
Michal Beneš
+ PDF Chat Weakly nonlinear asymptotics of the kappa-theta model of cellular flames: the Q-S equation 2005 Claude-Michel Brauner
Michael L. Frankel
Josephus Hulshof
Gregory Sivashinsky
+ Rakib-Sivashinsky and Michelson-Sivashinsky Equations for Upward Propagating Flames: A Comparison Analysis 2002 Leonardo F. Guidi
Domingos H. U. Marchetti
+ PDF Chat Well-Posedness and Asymptotics of a Coordinate-Free Model of Flame Fronts 2021 David M. Ambrose
Fazel Hadadifard
James Wright
+ PDF Chat Dynamics of kinks in one- and two-dimensional hyperbolic models with quasidiscrete nonlinearities 2001 Horacio G. Rotstein
Igor Mitkov
Anatol M. Zhabotinsky
Irving R. Epstein
+ Equations de réaction-diffusion et propagation en milieu hétérogène 2008 Grégoire Nadin
+ Global attractor and inertial sets for a nonlocal Kuramoto-Sivashinsky equation 2003 G. I. Sivashinsky
Adrian-Nicolae Rotariu
L. A. Peletier
Danielle Hilhorst
+ PDF Chat Travelling Waves and Exponential Nonlinearities in the Zeldovich-Frank-Kamenetskii Equation 2024 Samuel Jelbart
Kristian Uldall Kristiansen
Peter Szmolyan
+ A comparison analysis of Sivashinsky's type evolution equations describing flame propagation in channels 2003 Leonardo F. Guidi
Domingos H. U. Marchetti
+ Front formation and motion in quasilinear parabolic equations 2005 Jörg Härterich
Corrado Mascia
+ Exact Propagating Wave Solutions in Reaction Cross-Diffusion System 2020 Abdullah Aldurayhim
V. N. Biktashev
+ Exact Propagating Wave Solutions in Reaction Cross-Diffusion System 2020 Abdullah Aldurayhim
V. N. Biktashev
+ Exact propagating wave solutions in reaction cross-diffusion system 2020 Abdullah Aldurayhim
V. N. Biktashev
+ Mathematical analysis of a planar flame model with nonlinear diffusion 1993 Jean‐Michel Roquejoffre
+ Algebraic calming for the 2D Kuramoto-Sivashinsky equations 2023 Matthew Enlow
Adam Larios
Jiahong Wu