Necessary density conditions for sampling and interpolation of certain entire functions

Type: Article

Publication Date: 1967-01-01

Citations: 850

DOI: https://doi.org/10.1007/bf02395039

Locations

Similar Works

Action Title Year Authors
+ Necessary density conditions for sampling and interpolation in de Branges spaces 2014 Sa’ud Al-Sa’di
Eric Weber
+ PDF Chat 2.11. Necessary conditions for interpolation by entire functions 1984 B. A. Taylor
+ PDF Chat Sampling and interpolation of entire functions and exponential systems in convex domains 1994 Yurii Lyubarskii
Kristian Seip
+ Continuity properties of sample functions 1960 Kai Lai Chung
+ Proofs of sampling and interpolation theorems 2004 Peter Duren
Alexander Schuster
+ PDF Chat Approximation and interpolation of entire functions 1970 T. Winiarski
+ Concerning interpolation of entire functions 1968 Alex Borisevich
G. P. Lapin
+ Interpolation of Entire Functions 1965 Q. I. Rahman
+ Interpolation of entire functions 2011 Ghiocel Groza
Azeem Haider
Sardar Mohib Ali Khan
+ Sampling theorems for periodic functions and interpolation formulae for sampled data 2007 Oie Samon
+ Density estimation for samples satisfying a certain absolute regularity condition 1984 Ken-ichi Yoshihara
+ Interpolation of random functions 1991 Michael Weba
+ Generalized Sampling Theorem as an Interpolation Formula 1974 Éi Iti Takizawa
Hirosi Isigaki
+ Birkhoff interpolation of entire functions 1980 C.S.F Shull
+ Band-Limited Functions and Sampling Theorem 1998
+ Fourier sampling of piecewise-smooth functions, Johnson-Lindenstrauss lemma, and Turan-Nazarov inequality 2013 Yosef Yomdin
+ On Landau's Necessary Density Conditions for Sampling and Interpolation of Band-Limited Functions 1996 Karlheinz Gröchenig
Haja N. Razafinjatovo
+ Interpolation with entire functions having a regular distribution of zeros 1967 R. M. Redheffer
+ A Note on the Interpolation of Entire Functions 2003 Guantie Deng
+ Function Spaces in Lipschitz Domains and Optimal Rates of Convergence for Sampling 2005 Erich Novak
Hans Triebel