Intervals of continua which are Hilbert cubes

Type: Article

Publication Date: 1978-01-01

Citations: 23

DOI: https://doi.org/10.1090/s0002-9939-1978-0480197-6

Abstract

If <italic>P</italic> is a subcontinuum of a metric continuum <italic>X</italic>, then by the <italic>interval of continua</italic> <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper C left-parenthesis upper P comma upper X right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">C</mml:mi> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>P</mml:mi> <mml:mo>,</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathcal {C}(P,X)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> we mean the space of all subcontinua of <italic>X</italic> which contain <italic>P</italic> (with the Hausdorff metric). We show that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper C left-parenthesis upper P comma upper X right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">C</mml:mi> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>P</mml:mi> <mml:mo>,</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathcal {C}(P,X)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is often homeomorphic with the Hilbert cube.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Growth hyperspaces of Peano continua 1978 D. W. Curtis
+ PDF Chat Cut points of 𝑋 and the hyperspace of subcontinua 𝐶(𝑋) 1981 Togo Nishiura
Choon Jai Rhee
+ A continuum whose hyperspace of subcontinua is not its continuous image 2007 Alejandro Illanes
+ PDF Chat Hausdorff hypercubes which do not contain arcless continua 1985 Michel Smith
+ PDF Chat Homogeneous continua in Euclidean (𝑛+1)-space which contain an 𝑛-cube are locally connected 1988 Janusz R. Prajs
+ PDF Chat Continuously homogeneous continua and their arc components 1987 Janusz R. Prajs
+ PDF Chat A fixed point theorem for hyperspaces of 𝜆 connected continua 1975 Charles L. Hagopian
+ PDF Chat The hyperspace of the closed unit interval is a Hilbert cube 1975 R. Schori
James E. West
+ PDF Chat Schlais’ theorem extends to 𝜆 connected plane continua 1973 Charles L. Hagopian
+ PDF Chat Monotone decompositions of continua not separated by any subcontinua 1974 Eldon J. Vought
+ PDF Chat Homogeneous continua in Euclidean (𝑛+1)-space which contain an 𝑛-cube are 𝑛-manifolds 1990 Janusz R. Prajs
+ PDF Chat A characterization of locally connected continua by hyperspace retractions 1977 Sam B. Nadler
+ PDF Chat On closed subspaces of 𝜔* 1993 Alan Dow
Ryszard Frankiewicz
P. Zbierski
+ Semi-terminal continua in Kelley spaces 2011 Janusz R. Prajs
+ PDF Chat A characterization of continua that contain no 𝑛-ods and no 𝑊-sets 1990 Eldon J. Vought
+ PDF Chat 𝐶(𝑋) is not necessarily a retract of 2^{𝑋} 1977 Jack T. Goodykoontz
+ PDF Chat Restrictions of open mappings of continua 1990 Witold D. Bula
E. D. Tymchatyn
+ PDF Chat Completeness of {𝑠𝑖𝑛𝑛𝑥+𝐾𝑖 𝑐𝑜𝑠𝑛𝑥} 1971 Jonathan I. Ginsberg
+ PDF Chat 𝑑-final continua 1988 John Isbell
+ PDF Chat Disk-like products of 𝜆 connected continua. I, II 1975 Charles L. Hagopian