Another characterization of BMO

Type: Article

Publication Date: 1980-06-01

Citations: 282

DOI: https://doi.org/10.1090/s0002-9939-1980-0565349-8

Abstract

The following characterization of functions of bounded mean oscillation (BMO) is proved. <italic>f</italic> is in BMO if and only if <disp-formula content-type="math/mathml"> \[ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f equals alpha log g Superscript asterisk Baseline minus beta log h Superscript asterisk Baseline plus b"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>=</mml:mo> <mml:mi>α</mml:mi> <mml:mi>log</mml:mi> <mml:mo>⁡</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>g</mml:mi> <mml:mo>∗</mml:mo> </mml:msup> </mml:mrow> <mml:mo>−</mml:mo> <mml:mi>β</mml:mi> <mml:mi>log</mml:mi> <mml:mo>⁡</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>h</mml:mi> <mml:mo>∗</mml:mo> </mml:msup> </mml:mrow> <mml:mo>+</mml:mo> <mml:mi>b</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">f = \alpha \log {g^ \ast } - \beta \log {h^ \ast } + b</mml:annotation> </mml:semantics> </mml:math> \] </disp-formula> where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="g Superscript asterisk Baseline comma left-parenthesis h Superscript asterisk Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>g</mml:mi> <mml:mo>∗</mml:mo> </mml:msup> </mml:mrow> <mml:mo>,</mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>h</mml:mi> <mml:mo>∗</mml:mo> </mml:msup> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{g^ \ast },({h^ \ast })</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the Hardy-Littlewood maximal function of <italic>g</italic>, (<italic>h</italic>), respectively, <italic>b</italic> is bounded and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-vertical-bar f double-vertical-bar Subscript BMO Baseline less-than-or-slanted-equals c left-parenthesis alpha plus beta plus double-vertical-bar b double-vertical-bar Subscript normal infinity Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mrow> <mml:mo symmetric="true">‖</mml:mo> <mml:mi>f</mml:mi> <mml:mo symmetric="true">‖</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mtext>BMO</mml:mtext> </mml:mrow> </mml:mrow> </mml:msub> </mml:mrow> <mml:mo>⩽</mml:mo> <mml:mi>c</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>α</mml:mi> <mml:mo>+</mml:mo> <mml:mi>β</mml:mi> <mml:mo>+</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mrow> <mml:mo symmetric="true">‖</mml:mo> <mml:mi>b</mml:mi> <mml:mo symmetric="true">‖</mml:mo> </mml:mrow> <mml:mi mathvariant="normal">∞</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{\left \| f \right \|_{{\text {BMO}}}} \leqslant c(\alpha + \beta + {\left \| b \right \|_\infty })</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Characterizations of bounded mean oscillation 1975 Stephen Jay Berman
+ PDF Chat Another Characterization of BMO 1980 R. R. Coifman
R. Rochberg
+ PDF Chat Characterizations of bounded mean oscillation 1971 Charles Fefferman
+ PDF Chat Functions of vanishing mean oscillation 1975 Donald Sarason
+ Properties of BMO Functions whose Reciprocals are also BMO 1993 Raymond Johnson
C. J. Neugebauer
+ PDF Chat Relation Between BMO and A2 Weight Functions 2016 Durga Jang K.C.
Santosh Ghimire
+ Minimal conditions for BMO 2021 Javier Canto
Carlos Pérez
Ezequiel Rela
+ Functions of bounded mean oscillation 2009 Paul Koosis
+ Bounded Mean Oscillation 2007 John B. Garnett
+ A property of BMO-martingales 1978 Norihiko Kazamaki
+ A note on BMO and its application 2004 Jiecheng Chen
Zhu Xiang-rong
+ BMO-strong means of Fourier series 1989 V. A. Rodin
+ An analogue of the concept of functions with bounded mean oscillation 1977 L. G. Gurov
Yu. G. Reshetnyak
+ A Characterization of Vanishing Mean Oscillation 2006 Themis Mitsis
+ PDF Chat A characterization of 𝐵-slowly varying functions 1976 Steven Bloom
+ PDF Chat A characterization of BMO-martingales 1976 Norihiko Kazamaki
+ PDF Chat On the boundness and oscillation of solutions to <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="$(m(t)x^\prime)^\prime + a(t)b(x) = 0$" id="E1"><mml:msup><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:mi>m</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>t</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:msup><mml:mi>x</mml:mi><mml:mo>′</mml:mo></mml:msup></mml:mrow><mml:mo>)</mml:mo></mml:mrow><mml:mo>′</mml:mo></mml:msup><mml:mo>+</mml:mo><mml:mi>a</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:… 1987 Allan Kroopnick
+ BMO for nondoubling measures 2000 Jaume Mateu
Pertti Mattila
Artur Nicolau
Joan Orobitg
+ PDF Chat Another characterization of BLO 1982 Colin Bennett
+ PDF Chat Oscillation properties of 𝑦ⁿ+𝑝𝑦=0 1980 Gary D. Jones