Frobenius subgroups of free profinite products

Type: Article

Publication Date: 2011-02-09

Citations: 14

DOI: https://doi.org/10.1112/blms/bdq114

Abstract

We solve an open problem of Herfort and Ribes: Profinite Frobenius groups of certain type do occur as closed subgroups of free profinite products of two profinite groups.This also solves a question of Pop about prosolvable subgroups of free profinite products.

Locations

  • Bulletin of the London Mathematical Society - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ On Closed Subgroups of Free Products of Profinite Groups 1987 Dan Haran
+ PDF Chat Free subgroups of free profinite groups 1999 Dan Haran
+ PDF Chat Prosolvable subgroups of free products of profinite groups 1994 Moshe Jarden
+ On the frattini subgroup of free products of profinite groups 1979 B. C. Oltikar
Luis Ribes
+ PDF Chat NORMAL SUBGROUPS OF PROFINITE GROUPS OF FINITE COHOMOLOGICAL DIMENSION 2004 Antonio JosƩ Engler
Dan Haran
Dessislava H. Kochloukova
Pavel Zalesskii
+ PDF Chat Hilbertian Fields and Free Profinite Groups 1992 Moshe Jarden
Alexander Lubotzky
+ Solvable subgroups of free products of profinite groups 1989 Wolfgang Herfort
Luis Ribes
+ Free Profinite Groups 2023 Michael D. Fried
Moshe Jarden
+ PDF Chat Free Factors and Profinite Completions 2022 Alejandra Garrido
Andrei Jaikinā€Zapirain
+ Free factors and profinite completions 2022 Alejandra Garrido
Andrei Jaikinā€Zapirain
+ Prosoluble subgroups of free profinite products 2023 Pavel Zalesskii
+ Frobenius subgroups of free products of prosolvable groups 1989 Wolfgang Herfort
Luis Ribes
+ Generalized Free Products 2021 Dan Haran
Moshe Jarden
+ Profinite Frobenius groups 1979 Dion Gildenhuys
Wolfgang Herfort
Luis Ribes
+ Free Profinite Groups 2005
+ Free Profinite Groups 2010 Luis Ribes
Pavel Zalesskii
+ Free Profinite Groups 2008
+ Free Profinite Groups 2000 Luis Ribes
Pavel Zalesskii
+ PDF Chat Free subgroups of finitely generated free profinite groups 2016 Mark Shusterman
+ Finite Extensions of Free Profinite Groups 1997