Graded algebras having a unique rational homotopy type

Type: Article

Publication Date: 1982-01-01

Citations: 3

DOI: https://doi.org/10.1090/s0002-9939-1982-0660618-7

Abstract

We consider the problem for which graded algebra <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A Superscript asterisk"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>A</mml:mi> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{A^* }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> complexes such that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H Superscript asterisk Baseline left-parenthesis upper K comma upper Q right-parenthesis asymptotically-equals upper A Superscript asterisk"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>H</mml:mi> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>K</mml:mi> <mml:mo>,</mml:mo> <mml:mi>Q</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>≃<!-- ≃ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>A</mml:mi> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msup> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{H^*}(K,Q) \simeq {A^*}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is unique up to homotopy type. A necessary and sufficient condition is given using formal minimal model of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A Superscript asterisk"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>A</mml:mi> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{A^*}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Algebras realized by 𝑛 rational homotopy types 1991 Gregory Lupton
+ 𝐺₀ of a graded ring 1972 Leslie G. Roberts
+ PDF Chat 𝐺-spaces with prescribed equivariant cohomology 1983 Georgia Triantafillou
+ Rational 𝑆¹-equivariant homotopy theory 2001 Laura Scull
+ On associated graded modules having a pure resolution 2015 Tony J. Puthenpurakal
+ On representations of rational Cherednik algebras of complex rank 2014 Inna Entova-Aizenbud
+ Gorenstein space with nonzero evaluation map 1999 H. Gammelin
+ PDF Chat Uniqueness of product and coproduct decompositions in rational homotopy theory 1981 R. R. Douglas
Lex E. Renner
+ PDF Chat Two exact sequences in rational homotopy theory relating cup products and commutators 1986 Larry A. Lambe
+ Associated primes of graded components of local cohomology modules 2002 Markus Brodmann
Mordechai Katzman
Rodney Sharp
+ Rational homotopy type of the classifying space for fibrewise self-equivalences 2012 Urtzi Buijs
Samuel Bruce Smith
+ PDF Chat Hopf algebras up to homotopy 1989 David J. Anick
+ PDF Chat Homotopy trees with trivial classifying ring 1976 Micheal N. Dyer
+ Open loci of graded modules 2006 Christel Rotthaus
Liana M. Şega
+ PDF Chat On the rational homotopy type of function spaces 1997 Edgar H. Brown
Robert H. Szczarba
+ PDF Chat $F$-purity and rational singularity in graded complete intersection rings 1987 Richard Fedder
+ Homotopy classification of morphisms of differential graded algebras 2017 Tornike Kadeishvili
+ PDF Chat Graded Lie Algebras of Maximal Class 1997 A. Caranti
Sandro Mattarei
M. F. Newman
+ Graded algebras 1972 V. E. Govorov
+ PDF Chat Formal spaces with finite-dimensional rational homotopy 1982 Yves Félix
Stephen Halperin