On the cup product for groups

Type: Article

Publication Date: 1992-01-01

Citations: 0

DOI: https://doi.org/10.1090/s0002-9939-1992-1093596-6

Abstract

For <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> any group and trivial coefficients in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, a commutative ring, the authors analyze the kernel of the cup product <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="union colon upper H Superscript 1 Baseline left-parenthesis upper G comma upper R right-parenthesis circled-times upper H Superscript 1 Baseline left-parenthesis upper G comma upper R right-parenthesis right-arrow upper H squared left-parenthesis upper G comma upper R right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo>∪<!-- ∪ --></mml:mo> <mml:mo>:</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>G</mml:mi> <mml:mo>,</mml:mo> <mml:mi>R</mml:mi> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>⊗<!-- ⊗ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>G</mml:mi> <mml:mo>,</mml:mo> <mml:mi>R</mml:mi> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo stretchy="false">→<!-- → --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>G</mml:mi> <mml:mo>,</mml:mo> <mml:mi>R</mml:mi> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">\cup :{H^1}\left ( {G,R} \right ) \otimes {H^1}\left ( {G,R} \right ) \to {H^2}\left ( {G,R} \right )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> by splicing it together with part of the six-term Hom-Ext exact sequence obtained from <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="0 right-arrow upper I squared slash upper I cubed right-arrow upper I slash upper I cubed right-arrow upper I slash upper I squared right-arrow 0"> <mml:semantics> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo stretchy="false">→<!-- → --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>I</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>I</mml:mi> <mml:mn>3</mml:mn> </mml:msup> </mml:mrow> <mml:mo stretchy="false">→<!-- → --></mml:mo> <mml:mi>I</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>I</mml:mi> <mml:mn>3</mml:mn> </mml:msup> </mml:mrow> <mml:mo stretchy="false">→<!-- → --></mml:mo> <mml:mi>I</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>I</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:mo stretchy="false">→<!-- → --></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">0 \to {I^2}/{I^3} \to I/{I^3} \to I/{I^2} \to 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat A note on the cup product for pro-𝑝 groups 1988 Tilmann Würfel
+ On the Cup Product for Groups 1992 M. N. Dyer
J. V. Leahy
L. J. Mooney
+ PDF Chat On tensor products and extended centroids 1983 W. K. Nicholson
J. F. Watters
+ PDF Chat Commutators as products of squares 1973 Roger C. Lyndon
Morris Newman
+ PDF Chat On products of powers in groups 1973 Roger C. Lyndon
T. P. McDonough
Morris Newman
+ Class groups of Kummer extensions via cup products in Galois cohomology 2018 Karl Schaefer
Eric Stubley
+ Free products in the unit group of the integral group ring of a finite group 2017 Geoffrey Janssens
Eric Jespers
Doryan Temmerman
+ PDF Chat On the supercenter of a group over domains of characteristic 0 1981 Héctor A. Merklen
+ On free subgroups of units of rings 1999 A. Salwa
+ PDF Chat An inverse function theorem for free groups 1973 Joan S. Birman
+ Products on 𝑀𝑈-modules 1999 Nick Strickland
+ On groups with commutators of bounded order 1999 Pavel Shumyatsky
+ PDF Chat Group-graded rings, smash products, and group actions 1984 Miriam Cohen
Susan Montgomery
+ From braces to pre-Lie rings 2024 Aner Shalev
Agata Smoktunowicz
+ PDF Chat Functorial structure of units in a tensor product 1996 David B. Jaffe
+ PDF Chat A theorem on injectivity of the cup product 1973 John Carter Wood
+ PDF Chat On classical Clifford theory 1988 Morton E. Harris
+ PDF Chat A note on zero divisors in group-rings 1972 Jacques Lewin
+ PDF Chat Prime length of crossed products 1989 Charles C. Welsh
+ On the number of generators of an algebra over a commutative ring 2022 Uriya A. First
Zinovy Reichstein
Ben Williams

Works That Cite This (0)

Action Title Year Authors