Characterization of the flip operator

Type: Article

Publication Date: 1974-11-01

Citations: 0

DOI: https://doi.org/10.1090/s0002-9939-1974-0350493-8

Abstract

The flip operator <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper F"> <mml:semantics> <mml:mi>F</mml:mi> <mml:annotation encoding="application/x-tex">F</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L Subscript p Baseline left-parenthesis left-bracket 0 comma 1 right-bracket right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mo stretchy="false">[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy="false">]</mml:mo> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{L_p}([0,1])</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, defined by <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper F left-parenthesis f right-parenthesis left-parenthesis t right-parenthesis equals f left-parenthesis 1 minus t right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>F</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>f</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>−</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">F(f)(t) = f(1 - t)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, for <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding="application/x-tex">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L Subscript p Baseline left-parenthesis left-bracket 0 comma 1 right-bracket right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mo stretchy="false">[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy="false">]</mml:mo> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{L_p}([0,1])</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is characterized up to isometric transformation by means of its induced <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="sigma"> <mml:semantics> <mml:mi>σ</mml:mi> <mml:annotation encoding="application/x-tex">\sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-isomorphism on the Borel sets of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-bracket 0 comma 1 right-bracket"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy="false">]</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">[0,1]</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat On the Friedrichs operator 1995 Peng Lin
Richard Rochberg
+ PDF Chat Characterization of abstract composition operators 1974 William C. Ridge
+ PDF Chat Dunford-Pettis composition operators on 𝐻¹ in several variables 1998 Alec Matheson
+ PDF Chat Composition operator on 𝑙^{𝑝} and its adjoint 1978 Raj Singh
B. S. Komal
+ PDF Chat A characterization of 𝐹⁺∩𝑁 1976 M. Stoll
+ PDF Chat Inverting the half-jump 1983 Steven Homer
Gerald E. Sacks
+ Continuity of translation operators 2011 Krishna B. Athreya
Justin R. Peters
+ PDF Chat Contractions with the bicommutant property 1985 Katsutoshi Takahashi
+ PDF Chat Similarity of parts to the whole for certain multiplication operators 1987 Paul Bourdon
+ PDF Chat The operator inequality 𝑃≤𝐴*𝑃𝐴 1990 B. P. Duggal
+ PDF Chat Contraction operators quasisimilar to a unilateral shift 1984 V. T. Alexander
+ On the structure of 𝑃(𝑛)_{∗}𝑃((𝑛)) for 𝑝=2 2002 Christian Nassau
+ PDF Chat The existence question in the calculus of variations: a density result 1994 Arrigo Cellina
Carlo Mariconda
+ A non-trivial copy of 𝛽ℕ∖ℕ 2014 Alan Dow
+ Recursive formula for 𝜓^{𝑔}-𝜆₁𝜓^{𝑔-1}+⋯+(-1)^{𝑔}𝜆_{𝑔} in \overline{ℳ}_{ℊ,1} 2009 Daniele Arcara
Fumitoshi Sato
+ PDF Chat A formula for 𝐸_{𝑊}𝑒𝑥𝑝(-2⁻¹𝑎²‖𝑥+𝑦‖²₂) 1987 Tzuu-Shuh Chiang
Yun shyong Chow
Yuh-Jia Lee
+ PDF Chat On restricted weak type $(1,\,1)$ 1974 K. H. Moon
+ PDF Chat On the sign of the difference 𝜋(𝑥)-𝑙𝑖(𝑥) 1987 H. J. J. te Riele
+ PDF Chat Invertible composition operators on 𝐿²(𝜆) 1976 Raj Singh
+ PDF Chat Applications of the 𝑢-closure operator 1981 M. Solveig Espelie
James E. Joseph
Myung H. Kwack

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (1)

Action Title Year Authors
+ PDF Chat On the isometries of certain function-spaces 1958 John Lamperti