Type: Article
Publication Date: 1997-11-01
Citations: 62
DOI: https://doi.org/10.1214/aoap/1043862422
Let ${X_i: i \geq 1}$ be i.i.d. with uniform distribution $[- 1/2, 1/2]^d, d \geq 2$, and let $T_n$ be a minimal spanning tree on ${X_1, \dots, X_n}$. For each strictly positive integer $\alpha$, let $N({X_1, \dots, X_n}; \alpha)$ be the number of vertices of degree $\alpha$ in $T_n$. Then, for each $\alpha$ such that $P(N({X_1, \dots, X_{\alpha+1}}; \alpha) = 1) > 0$, we prove a central limit theorem for $N({X_1, \dots, X_n}; \alpha)$.