Group Invariant Scattering

Type: Article

Publication Date: 2012-07-24

Citations: 944

DOI: https://doi.org/10.1002/cpa.21413

Abstract

Abstract This paper constructs translation‐invariant operators on $\font\open=msbm10 at 10pt\def\R{\hbox{\open R}}{\bf L}^2({{{\R}}}^d)$ , which are Lipschitz‐continuous to the action of diffeomorphisms. A scattering propagator is a path‐ordered product of nonlinear and noncommuting operators, each of which computes the modulus of a wavelet transform. A local integration defines a windowed scattering transform, which is proved to be Lipschitz‐continuous to the action of C 2 diffeomorphisms. As the window size increases, it converges to a wavelet scattering transform that is translation invariant. Scattering coefficients also provide representations of stationary processes. Expected values depend upon high‐order moments and can discriminate processes having the same power spectrum. Scattering operators are extended on L 2 ( G ), where G is a compact Lie group, and are invariant under the action of G . Combining a scattering on $\font\open=msbm10 at 10pt\def\R{\hbox{\open R}}{\bf L}^2({{{\R}}}^d)$ and on L 2 ( SO ( d )) defines a translation‐ and rotation‐invariant scattering on $\font\open=msbm10 at 10pt\def\R{\hbox{\open R}}{\bf L}^2({{{\R}}}^d)$ . © 2012 Wiley Periodicals, Inc.

Locations

  • Communications on Pure and Applied Mathematics - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Group Invariant Scattering 2011 Stéphane Mallat
+ Group Invariant Scattering 2011 Stéphane Mallat
+ Translation-Invariant Linear Operators 2011 M. W. Wong
+ Wavelet subspaces invariant under groups of translation operators 2003 Biswaranjan Behera
Shobha Madan
+ Translation-invariant operators in Lorentz spaces 1986 A. M. Shteinberg
+ PDF Chat Translation invariant linear operators and generalized functions 1975 Charles Swartz
+ Linear Scattering Operators 2012
+ Translation invariant operators on Lorentz spaces 1987 Leonardo Colzani
+ Translation-invariant operators on spaces of vector-valued functions 2003 Tuomas Hytönen
+ Translation-invariant operators continuous in measure 1977 Daniel M. Oberlin
+ PDF Chat Translation invariant operators 1995 E. B. Davies
+ PDF Chat Two wavelet multipliers and Landau-Pollak-Slepian operators on locally compact abelian groups associated to right-H-translation invariant functions 2023 Santosh Kumar Nayak
Swaraj Paul
+ Diffeomorphism Invariance and Observables 1994 Viqar Husain
+ Scale invariant operators. 2001 Radko Mesiar
+ The Continuous Wavelet Transform and Symmetric Spaces 2001 Raymond C. Fabec
Gestur Ólafsson
+ Fourier transformation 2011 Peter Hamm
Martin T. Zanni
+ Fourier and Laplace transformations 2012 Horst Osswald
+ PDF Chat Continuous wavelet transform and wavelet frames on the sphere using Clifford analysis 2007 Paula Cerejeiras
M. Ferreira
Uwe Kähler
Franciscus Sommen
+ Fourier and Laplace transformations 2002 Martin Dressel
G. Grüner
+ Translation invariant operators 2018 Alejandro Molero Casanova

Works That Cite This (434)

Action Title Year Authors
+ Geodesic Discriminant Analysis for Manifold-Valued Data 2018 Maxime Louis
Benjamin Charlier
Stanley Durrleman
+ PDF Chat Synthesizing developmental trajectories 2017 Paul Villoutreix
Joakim Andén
Bomyi Lim
Hang Lu
Ioannis G. Kevrekidis
Amit Singer
Stanislav Y. Shvartsman
+ Convolutional Neural Networks for Spherical Signal Processing via Area-Regular Spherical Haar Tight Framelets 2022 Jianfei Li
Feng Han
Xiaosheng Zhuang
+ Geometric Wavelet Scattering Networks on Compact Riemannian Manifolds 2019 Michael Perlmutter
Feng Gao
Guy Wolf
Matthew Hirn
+ PDF Chat Approximate computation of DFT without performing any multiplications: Application to radar signal processing 2014 Musa Tunç Arslan
Alican Bozkurt
R. Akin Sevimli
Cem Emre Akbaş
Ahmet Enis Çetin
+ PDF Chat Projective LDDMM: Mapping Molecular Digital Pathology with Tissue MRI 2022 Kaitlin Stouffer
Menno P. Witter
Daniel J. Tward
Michael I. Miller
+ Kernel Alignment Risk Estimator: Risk Prediction from Training Data 2020 Arthur Paul Jacot
Berfin Şimşek
Francesco Spadaro
Clément Hongler
Franck Gabriel
+ PDF Chat Robust Equivariant Imaging: a fully unsupervised framework for learning to image from noisy and partial measurements 2022 Dongdong Chen
Julián Tachella
Mike E. Davies
+ Clustering by Low-Rank Doubly Stochastic Matrix Decomposition 2012 Zhirong Yang
Erkki Oja
+ PDF Chat Statistical learning of geometric characteristics of wireless networks 2019 Antoine Brochard
Bartłomiej Błaszczyszyn
Stéphane Mallat
Sixin Zhang