Primitive elements in free groups

Type: Article

Publication Date: 1989-01-01

Citations: 5

DOI: https://doi.org/10.1090/s0002-9939-1989-0952315-1

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper F Subscript n"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>F</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{F_n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> denote the free group of rank <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding="application/x-tex">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> generated by <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="x 1 comma x 2 comma ellipsis comma x Subscript n Baseline"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:mo>,</mml:mo> <mml:mo>…<!-- … --></mml:mo> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>x</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{x_1},{x_2}, \ldots ,{x_n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We say that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="y element-of upper F Subscript n"> <mml:semantics> <mml:mrow> <mml:mi>y</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>F</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">y \in {F_n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a <italic>primitive</italic> element of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper F Subscript n"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>F</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{F_n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> if it is contained in a set of free generators of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper F Subscript n"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>F</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{F_n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In this note we construct, for each integer <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n greater-than-or-equal-to 4"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>4</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">n \geq 4</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, an <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis n minus 1 right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(n - 1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-generator group <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H"> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding="application/x-tex">H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> that has an <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding="application/x-tex">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-generator, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="2"> <mml:semantics> <mml:mn>2</mml:mn> <mml:annotation encoding="application/x-tex">2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-relator presentation <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H equals mathematical left-angle x 1 comma ellipsis comma x Subscript n Baseline vertical-bar r 1 comma r 2 mathematical right-angle"> <mml:semantics> <mml:mrow> <mml:mi>H</mml:mi> <mml:mo>=</mml:mo> <mml:mo fence="false" stretchy="false">⟨<!-- ⟨ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:mo>,</mml:mo> <mml:mo>…<!-- … --></mml:mo> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>x</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>r</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>r</mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:mo fence="false" stretchy="false">⟩<!-- ⟩ --></mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">H = \langle {x_1}, \ldots ,{x_n}|{r_1},{r_2}\rangle</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that the normal closure of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="StartSet r 1 comma r 2 EndSet"> <mml:semantics> <mml:mrow> <mml:mo fence="false" stretchy="false">{</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>r</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>r</mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:mo fence="false" stretchy="false">}</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\{ {r_1},{r_2}\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper F Subscript n"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>F</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{F_n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> does not contain a primitive element of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper F Subscript n"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>F</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{F_n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat An inverse function theorem for free groups 1973 Joan S. Birman
+ PDF Chat Groups of finite weight 1981 A. H. Rhemtulla
+ Groups with a character of large degree 2008 Noah Snyder
+ PDF Chat Free 𝐸-𝑚 groups and free 𝐸-𝑚 semigroups 1982 Takayuki Tamura
+ PDF Chat A class of finite group-amalgams 1980 Dragomir Ž. Djoković
+ Computing generators of free modules over orders in group algebras II 2011 Werner Bley
Henri Johnston
+ PDF Chat Infinite products of finite simple groups 1996 Jan Saxl
Saharon Shelah
Simon Thomas
+ PDF Chat Some properties of certain relatively free groups 1975 T. C. Hurley
+ PDF Chat 𝐿²(𝐺_{𝑄}\𝐺_{𝐴}) is not always multiplicity-free 1976 Lawrence Corwin
+ PDF Chat Supports of derivations, free factorizations, and ranks of fixed subgroups in free groups 1999 George M. Bergman
+ Free nilpotent groups are 𝐶*-superrigid 2019 Tron Omland
+ PDF Chat Nonresidually finite one-relator groups 1972 Stephen Meskin
+ Nilpotent subgroups of class 2 in finite groups 2021 Luca Sabatini
+ PDF Chat 𝑆-groups revisited 1981 Roger Hunter
Elbert A. Walker
+ PDF Chat Group algebras whose units satisfy a group identity 1997 Antonio Giambruno
Sudarshan K. Sehgal
A. Valenti
+ PDF Chat On groups of finite weight 1976 Phil Kutzko
+ PDF Chat 𝑁𝐾₁ of finite groups 1987 Dennis R. Harmon
+ Relative Brauer groups in characteristic 𝑝 2008 Roberto Aravire
Bill Jacob
+ Character degrees and nilpotence class of finite 𝑝-groups: An approach via pro-𝑝 groups 2002 Andrei Jaikin‐Zapirain
Alexander Moretó
+ PDF Chat The group determinant determines the group 1991 Edward Formanek
David A. Sibley