On a question of Quillen

Type: Article

Publication Date: 1983-01-01

Citations: 37

DOI: https://doi.org/10.1090/s0002-9947-1983-0709584-1

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a regular local ring, and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding="application/x-tex">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> a regular parameter of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Quillen asked whether every projective <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R Subscript f"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>R</mml:mi> <mml:mi>f</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{R_f}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-module is free. We settle this question when <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a regular local ring of an affine algebra over a field <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="k"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding="application/x-tex">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Further, if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has <italic>infinite</italic> residue field, we show that projective modules over Laurent polynomial extensions of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R Subscript f"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>R</mml:mi> <mml:mi>f</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{R_f}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are also free.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat On a question of Makar-Limanov 1996 Zinovy Reichstein
+ PDF Chat On a question of Feit 1986 Pamela A. Ferguson
Alexandre Turull
+ PDF Chat Two questions on scalar-reflexive rings 1992 Nicole Snashall
+ Variations on a question of Larsen and Lunts 2009 Julien Sebag
+ PDF Chat On a question of Faith in commutative endomorphism rings 1986 John Clark
+ PDF Chat 𝐾₁ of projective 𝑟-spaces 1970 Leslie G. Roberts
+ PDF Chat Divinsky’s radical 1972 Patrick N. Stewart
+ PDF Chat Defeat of the 𝐹𝑃²𝐹 conjecture: Huckaba’s example 1992 Carl Faith
+ PDF Chat A simple proof of Gabber’s theorem on projective modules over a localized local ring 1988 Richard G. Swan
+ PDF Chat Decomposing overrings 1981 B. Cortzen
L. W. Small
J. T. Stafford
+ PDF Chat 𝐼-rings 1975 W. K. Nicholson
+ PDF Chat Two examples of local Artinian rings 1989 Wei Min Xue
+ PDF Chat A note on D. Quillen’s paper: “Projective modules over polynomial rings” (Invent. Math. 36 (1976), 167–171) 1977 Moshe Roitman
+ PDF Chat Locally noetherian commutative rings 1971 William Heinzer
Jack Ohm
+ PDF Chat The finiteness of 𝐼 when 𝑅[𝑋]/𝐼 is 𝑅-projective 1973 J. W. Brewer
P. R. Montgomery
+ A solution to the Baer splitting problem 2007 Lidia Angeleri Hügel
Silvana Bazzoni
Dolors Herbera
+ PDF Chat On going down for simple overrings 1973 David E. Dobbs
+ PDF Chat Extension of a result of Beachy and Blair 1982 G. B. Desale
K. Varadarajan
+ PDF Chat Algebraic and etale 𝐾-theory 1985 W. G. Dwyer
Eric M. Friedlander
+ PDF Chat On quotient rings of trivial extensions 1983 Yoshimi Kitamura