Type: Article
Publication Date: 1992-01-01
Citations: 32
DOI: https://doi.org/10.1109/sfcs.1992.267804
The regularity lemma of Szemeredi (1978) is a result that asserts that every graph can be partitioned in a certain regular way. This result has numerous applications, but its known proof is not algorithmic. The authors first demonstrate the computational difficulty of finding a regular partition; they show that deciding if a given partition of an input graph satisfies the properties guaranteed by the lemma is co-NP-complete. However, they also prove that despite this difficulty the lemma can be made constructive; they show how to obtain, for any input graph, a partition with the properties guaranteed by the lemma, efficiently. The desired partition, for an n-vertex graph, can be found in time O(M(n)), where M(n)=O(n/sup 2.376/) is the time needed to multiply two n by n matrices with 0,1-entries over the integers. The algorithm can be parallelized and implemented in NC/sup 1/.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">></ETX>