Stability of Pólya–Szegő inequality for log-concave functions

Type: Article

Publication Date: 2014-05-06

Citations: 20

DOI: https://doi.org/10.1016/j.jfa.2014.03.015

Locations

  • Journal of Functional Analysis - View

Similar Works

Action Title Year Authors
+ Affine Orlicz Pólya–Szegö principle for log-concave functions 2017 Youjiang Lin
+ Convex symmetrization and Pólya–Szegö inequality 2003 Luca Esposito
Cristina Trombetti
+ Stability of the Prekopa-Leindler inequality for log-concave functions 2020 Károly J. Böröczky
Apratim De
+ ON POLYA-SZEGO INEQUALITIES 2005 Ke Ke
H. Hu
+ PDF Chat The Steiner symmetrization of log-concave functions and its applications 2013 Youjiang Lin
Gangsong Leng
+ On Polya-Szeg Inequalities 2006 Ke Hu
+ Necessary and sufficient conditions for rigidity of Pólya–Szegö inequality under Schwarz symmetrisation 2024 Filippo Cagnetti
+ Steiner symmetric extremals in Pólya–Szegö-type inequalities 2005 Andrea Cianchi
Nicola Fusco
+ Quantitative Pólya-Szegö principle for convex symmetrization 2009 Luca Esposito
Pasquale Ronca
+ A sharp Blaschke–Santaló inequality for $$\alpha $$ α -concave functions 2013 Liran Rotem
+ Stability of the Prékopa-Leindler inequality for log-concave functions 2021 Károly J. Böröczky
Apratim De
+ Another refinement of the Pólya–Szegö inequality 2010 Yu-Dong Wu
V. Lokesha
H. M. Srivastava
+ Convex rearrangement: Equality cases in the P�lya-Szeg� Inequality 2004 Adele Ferone
Roberta Volpicelli
+ Polar factorization and pseudo-rearrangements: applications to Pólya–Szegö type inequalities 2003 Adele Ferone
Roberta Volpicelli
+ Extension of Minkowski’s polarization result to quasi-concave functions and related geometric inequalities 2013 Vitali Milman
+ PDF Chat Steiner symmetrization: a weighted version of Pólya-Szegö principle 2007 Luca Esposito
Cristina Trombetti
+ On the Logarithmically Convexity for Two-Parameters Homogeneous Functions 2005 Zhen-Hang Yang
+ PDF Chat On Pólya-Szegö’s inequality 2013 Chang-Jian Zhao
Wing‐Sum Cheung
+ An Integral Inequality and Polya-Szego Inequality 2007 Жу
Yong-e
Hou
Haijun
+ Quasi-Concave Functions 2018 Prem K. Kythe

Works That Cite This (19)

Action Title Year Authors
+ PDF Chat Affine Orlicz Pólya–Szegö Principles and Their Equality Cases 2019 Youjiang Lin
Dongmeng Xi
+ PDF Chat The quantitative isoperimetric inequality and related topics 2015 Nicola Fusco
+ PDF Chat On Improvements of Kantorovich Type Inequalities 2019 Chang-Jian Zhao
Wing‐Sum Cheung
+ Affine Orlicz Pólya–Szegö principle for log-concave functions 2017 Youjiang Lin
+ LYZ ellipsoid and Petty projection body for log-concave functions 2018 Niufa Fang
Jiazu Zhou
+ PDF Chat Quantitative estimates for parabolic optimal control problems under <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e22" altimg="si21.svg"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>∞</mml:mi></mml:mrow></mml:msup></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e32" altimg="si22.svg"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:math… 2021 Idriss Mazari
+ PDF Chat The functional inequality for the mixed quermassintegral 2020 Fangwei Chen
Jianbo Fang
Miao Luo
Congli Yang
+ PDF Chat Functional Geominimal Surface Area and Its Related Affine Isoperimetric Inequality 2020 Niufa Fang
Jin Gen Yang
+ PDF Chat On Mixed Quermassintegral for Log-Concave Functions 2020 Fangwei Chen
Jianbo Fang
Miao Luo
Congli Yang
+ PDF Chat Faber–Krahn inequalities in sharp quantitative form 2015 Lorenzo Brasco
Guido De Philippis
Bozhidar Velichkov