Sharp Strichartz estimates on nontrapping asymptotically conic manifolds

Type: Article

Publication Date: 2006-08-01

Citations: 84

DOI: https://doi.org/10.1353/ajm.2006.0033

Abstract

We obtain the Strichartz inequalities ║u║ L q t L r x ([0,1]× M ) ≥ C║ u (0) L 2 ║( M ) for any smooth n -dimensional Riemannian manifold M which is asymptotically conic at infinity (with either short-range or long-range metric perturbation) and nontrapping, where u is a solution to the Schrödinger equation iu t + 1/2 Δ M u = 0, and 2 < q, r ≥ ∞ are admissible Strichartz exponents (2/ q + n/r = n /2). This corresponds with the estimates available for Euclidean space (except for the endpoint ( q, r ) = (2, 2 n/n -2) when n > 2). These estimates imply existence theorems for semi-linear Schrödinger equations on M , by adapting arguments from Cazenave and Weissler and Kato. This result improves on our previous result, which was an L 4 t,x Strichartz estimate in three dimensions. It is closely related to results of Staffilani-Tataru, Burq, Robbiano-Zuily and Tataru, who consider the case of asymptotically flat manifolds.

Locations

  • American Journal of Mathematics - View
  • arXiv (Cornell University) - PDF
  • arXiv (Cornell University) - View - PDF
  • American Journal of Mathematics - View
  • arXiv (Cornell University) - PDF
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Sharp Strichartz estimates on non-trapping asymptotically conic manifolds 2004 Andrew Hassell
Terence Tao
Jared Wunsch
+ Sharp Strichartz estimates on non-trapping asymptotically conic manifolds 2004 Andrew Hassell
Terence Tao
Jared Wunsch
+ PDF Chat A Strichartz Inequality for the Schrödinger Equation on Nontrapping Asymptotically Conic Manifolds 2005 Andrew Hassell
TERENCE TAO
Jared Wunsch
+ A Strichartz inequality for the Schroedinger equation on non-trapping asymptotically conic manifolds 2003 Andrew Hassell
Terence Tao
Jared Wunsch
+ PDF Global-in-time Strichartz estimates on nontrapping, asymptotically conic manifolds 2016 Andrew Hassell
Junyong Zhang
+ PDF Strichartz Estimates for Schrödinger Equations on Scattering Manifolds 2012 Haruya Mizutani
+ Strichartz estimates and nonlinear wave equation on nontrapping asymptotically conic manifolds 2013 Junyong Zhang
+ Global in time Strichartz inequalities on asymptotically flat manifolds with temperate trapping 2016 Jean‐Marc Bouclet
Haruya Mizutani
+ Strichartz estimates and nonlinear wave equation on nontrapping asymptotically conic manifolds 2014 Junyong Zhang
+ PDF Chat Global-in-time Strichartz estimates for Schrödinger on scattering manifolds 2017 Junyong Zhang
Jiqiang Zheng
+ PDF Chat Strichartz estimates for long range perturbations 2007 Jean‐Marc Bouclet
Nikolay Tzvetkov
+ Strichartz estimates for the Schrödinger equation on negatively curved compact manifolds 2023 Matthew D. Blair
Xiaoqi Huang
Christopher D. Sogge
+ Strichartz estimates on asymptotically hyperbolic manifolds 2007 Jean‐Marc Bouclet
+ PDF Strichartz estimates on asymptotically hyperbolic manifolds 2011 Jean‐Marc Bouclet
+ PDF Resolvent and spectral measure on non-trapping asymptotically hyperbolic manifolds III: Global-in-time Strichartz estimates without loss 2017 Xi Chen
+ Quasimode and Strichartz estimates for time-dependent Schrödinger equations with singular potentials 2020 Xiaoqi Huang
Christopher D. Sogge
+ Weighted Strichartz estimates for radial Schr\"odinger equation on noncompact manifolds 2007 Valeria Banica
Thomas Duyckaerts
+ PDF Strichartz estimates for the Dirac equation on asymptotically flat manifolds 2023 Federico Cacciafesta
Anne-Sophie de Suzzoni
Long Meng
+ PDF Chat Strichartz estimates for the Schr\"odinger equation on compact manifolds with nonpositive sectional curvature 2024 Xiaoqi Huang
Christopher D. Sogge
+ PDF Weighted Strichartz estimates for radial Schrödinger equation on noncompact manifolds 2007 Valeria Banica
Thomas Duyckaerts