Global well-posedness for the generalized magneto-hydrodynamic equations in the critical Fourier–Herz spaces

Type: Article

Publication Date: 2014-06-19

Citations: 19

DOI: https://doi.org/10.1016/j.jmaa.2014.06.031

Locations

  • Journal of Mathematical Analysis and Applications - View

Similar Works

Action Title Year Authors
+ Global well-posedness for Navier–Stokes equations in critical Fourier–Herz spaces 2012 Marco Cannone
Gang Wu
+ PDF Chat WELL-POSEDNESS FOR THE 3-D GENERALIZED MICROPOLAR FLUID SYSTEM IN CRITICAL FOURIER-BESOV-MORREY SPACES 2023 Fatima Ouidirne
Achraf Azanzal
Chakir Allalou
Mohamed Oukessou
+ The well-posedness of the incompressible Magnetohydro Dynamic equations in the framework of Fourier–Herz space 2017 Jingyue Li
Xiaoxin Zheng
+ Well-Posedness and Stability for the Generalized Incompressible Magneto-Hydrodynamic Equations in Critical Fourier-Besov-Morrey Spaces 2019 Azzeddine El Baraka
Mohamed Toumlilin
+ Existence and regularizing rate estimates of mild solutions to a generalized magneto-hydrodynamic system in Q-spaces 2015 Qiao Liu
Jihong Zhao
Shangbin Cui
+ Global well-posedness and decay results for 3D generalized magneto-hydrodynamic equations in critical Fourier-Besov-Morrey spaces 2017 Azzeddine El Baraka
Mohamed Toumlilin
+ Local and global well-posedness for fractional porous medium equation in critical Fourier-Besov spaces 2024 Ahmed El Idrissi
Brahim El Boukari
Jalila El Ghordaf
+ Well-Posedness and Stability for the Viscous Primitive Equations of Geophysics in Critical Fourier-Besov-Morrey Spaces 2020 Adil Abbassi
Chakir Allalou
Y. Oulha
+ Global well-posedness of strong solution to 2D MHD equations in critical Fourier-Herz spaces 2021 Dezai Min
Gang Wu
Zhuoya Yao
+ PDF Chat Well-Posedness in Variable-Exponent Function Spaces for the Three-Dimensional Micropolar Fluid Equations 2023 Muhammad Zainul Abidin
Muhammad Marwan
Naeem Ullah
Ahmed M. Zidan
+ Global well-posedness and analyticity for generalized porous medium equation in critical Fourier-Besov-Morrey spaces 2019 Mohamed Toumlilin
+ GLOBAL WELL-POSEDNESS OF THE GENERALIZED ROTATING MAGNETOHYDRODYNAMICS EQUATIONS IN VARIABLE EXPONENT FOURIER-BESOV SPACES 2021 Muhammad Zainul Abidin
Jiecheng Chen
+ PDF Chat Global mild solution for the Navier--Stokes--Nernst--Planck--Poisson system in Besov-weak-Herz spaces 2020 Aibo Liu
Jianing Xie
+ Global Well-posedness of Generalized Magnetohydrodynamics Equations in Variable Exponent Fourier-Besov-Morrey Spaces 2022 Muhammad Zainul Abidin
Jie Cheng Chen
+ Wavelets and the well-posedness of incompressible magneto-hydrodynamic equations in Besov type<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:mi>Q</mml:mi></mml:math>-space 2013 Pengtao Li
Qixiang Yang
+ PDF Chat Global Well-Posedness for Fractional Navier-Stokes Equations in critical Fourier-Besov-Morrey Spaces 2017 Azzeddine El Baraka
Mohamed Toumlilin
+ PDF Chat Global Well-Posedness and Analyticity of Generalized Porous Medium Equation in Fourier-Besov-Morrey Spaces with Variable Exponent 2021 Muhammad Zainul Abidin
Jiecheng Chen
+ Existence and uniqueness of solutions for Navier–Stokes equations with hyper-dissipation in a large space 2016 Zhijie Nan
Xiaoxin Zheng
+ Global small solutions to 2-D incompressible MHD system 2013 Fanghua Lin
Li Xu
Ping Zhang
+ Global large solutions to the Navier–Stokes–Nernst–Planck–Poisson equations in Fourier–Besov spaces 2022 Weiliang Xiao
Wenyu Kang