Type: Article
Publication Date: 1996-05-01
Citations: 95
DOI: https://doi.org/10.1214/aoap/1034968141
Let ${X_i, 1 \leq i < \infty}$ be i.i.d. with uniform distribution on $[0, 1]^d$ and let $M(X_1, \dots, X_n; \alpha)$ be $\min {\sum_{e \epsilon T'} |e|^{\alpha}; T' \text{a spanning tree on ${X_1, \dots, X_n}$}}$. Then we show that for $\alpha > 0$, $$\frac{M(X_1, \dots, X_n; \alpha) - EM (X_1, \dots, X_n; \alpha)}{n^{(d-2 \alpha)/2d}} \to N(0, \sigma_{\alpha, d}^2)$$ in distribution for some $\sigma_{\alpha, d}^2 > 0$.