𝐾-divisibility and a theorem of Lorentz and Shimogaki

Type: Article

Publication Date: 1986-01-01

Citations: 11

DOI: https://doi.org/10.1090/s0002-9939-1986-0826485-7

Abstract

The Brudnyi-Krugljak theorem on the <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding="application/x-tex">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-divisibility of Gagliardo couples is derived by elementary means from earlier results of Lorentz-Shimogaki on equimeasurable rearrangements of measurable functions. A slightly stronger form of Calderón’s theorem describing the Hardy-Littlewood-Pólya relation in terms of substochastic operators (which itself generalizes the classical Hardy-Littlewood-Pólya result for substochastic matrices) is obtained.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Decreasing rearrangements and doubly stochastic operators 1973 Peter Day
+ A New Rearrangement and the Theorem of Hardy-Littlewood-Polya 1976 Yukio Takeuchi
+ Continuity of Functions 2019 Palash B. Pal
+ Hardy-Ramanujan Journal 2021
+ Elementary and classical analysis 2017 Torkel Franzén
+ The 𝐾-functional and Calderón-Zygmund type decompositions 2007 Natan Kruglyak
+ PDF Chat Hardy-Bohr theorems 1966 J. C. Kurtz
+ PDF Chat Functional calculus and the Gelfand transformation 1984 Mihai Putinar
+ Análise não-standard 2021 Vinícius Franco Vasconcelos
+ PDF Chat Strict rearrangement inequalities: nonexpansivity and periodic Gagliardo seminorms 2024 Gyula Csató
Albert Mas Blesa
+ Hardy-type inequalities in quantum calculus 2018 Serikbol Shaimardan
+ Functional calculus of Hermitian elements and Bernstein inequalities 2006 Саулюс Норвидас
+ Theory of M¨obius Functions 1964 G.C. Rota
+ A Generalization on Hardy-Littlewood- Polya Theorem 2000 Yang Bi-cheng
+ A note on decreasing rearrangement and mean oscillation on measure spaces 2021 Almut Burchard
Galia Dafni
Ryan Gibara
+ Microlocal calculus of 𝑏-functions 2002
+ A Rearrangement Inequality and the Permutahedron 1990 Andrew Vince
+ A Rearrangement Inequality and the Permutahedron 1990 Andrew Vince
+ 12 Subordination and Bochner’s functional calculus 2009 René L. Schilling
Renming Song
Zoran Vondraček
+ An inequality for equimeasurable rearrangements and its application in the theory of differentiation of integrals 1983 Alexander M. Stokolos