Elliptic multiple zeta values, Grothendieck-Teichm\"uller and mould theory

Type: Preprint

Publication Date: 2015-06-30

Citations: 5

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ Elliptic multiple zeta values, Grothendieck-Teichmüller and mould theory 2015 Leila Schneps
+ PDF Chat Elliptic double shuffle, Grothendieck–Teichmüller and mould theory 2020 Leila Schneps
+ PDF Chat Mould Theory and the Double Shuffle Lie Algebra Structure 2020 Adriana Salerno
Leila Schneps
+ A mould-theoretic perspective on Kashiwara-Vergne theory 2019 Élise Raphael
+ PDF Chat Elliptic Multizetas and the Elliptic Double Shuffle Relations 2020 Pierre Lochak
Nils Matthes
Leila Schneps
+ Elliptic multizetas and the elliptic double shuffle relations 2017 Pierre Lochak
Nils Matthes
Leila Schneps
+ A stabilizer interpretation of double shuffle Lie algebras 2016 Benjamin Enriquez
Hidekazu Furusho
+ A stabilizer interpretation of double shuffle Lie algebras 2016 Benjamin Enriquez
Hidekazu Furusho
+ Double Shuffle and Kashiwara-Vergne Lie algebras 2012 Leila Schneps
+ Double Shuffle and Kashiwara-Vergne Lie algebras 2012 Leila Schneps
+ PDF Chat Double shuffle and Kashiwara–Vergne Lie algebras 2012 Leila Schneps
+ PDF Chat A Stabilizer Interpretation of Double Shuffle Lie Algebras 2017 Benjamin Enriquez
Hidekazu Furusho
+ ARI, GARI, Zig and Zag: An introduction to Ecalle's theory of multiple zeta values 2015 Leila Schneps
+ PDF Chat An alternative $\mathbb{Q}$-form of the cyclotomic double shuffle Lie algebra 2025 Hidekazu Furusho
Khalef Yaddaden
+ Bigraded Lie Algebras Related to Multiple Zeta Values 2022 Mohamad Maassarani
+ PDF Chat The cyclotomic double shuffle torsor in terms of Betti and de Rham coproducts 2023 Khalef Yaddaden
+ Zeta elements in depth 3 and the fundamental Lie algebra of a punctured elliptic curve 2015 Francis H. Brown
+ Zeta elements in depth 3 and the fundamental Lie algebra of a punctured elliptic curve 2015 Francis Brown
+ PDF Chat On the derivation representation of the fundamental Lie algebra of mixed elliptic motives 2016 Samuel Baumard
Leila Schneps
+ Combinatorics of the double shuffle Lie algebra 2019 Sarah Carr
Leila Schneps