Endpoint maximal and smoothing estimates for Schrödinger equations

Type: Article

Publication Date: 2010-01-01

Citations: 20

DOI: https://doi.org/10.1515/crelle.2010.018

Abstract

For α > 1 we consider the initial value problem for the dispersive equation i∂tu + (–Δ)α/2u = 0. We prove an endpoint Lp inequality for the maximal function with initial values in Lp-Sobolev spaces, for p ∈ (2 + 4/(d + 1), ∞). This strengthens the fixed time estimates due to Fefferman and Stein, and Miyachi. As an essential tool we establish sharp Lp space-time estimates (local in time) for the same range of p.

Locations

  • CiteSeer X (The Pennsylvania State University) - View - PDF
  • Journal für die reine und angewandte Mathematik (Crelles Journal) - View

Similar Works

Action Title Year Authors
+ Endpoint maximal and smoothing estimates for Schroedinger equations 2008 Keith M. Rogers
Andreas Seeger
+ PDF Chat Global estimates of maximal operators generated by dispersive equations 2008 Yonggeun Cho
Yongsun Shim
+ PDF Chat Weighted {$L\sp 2$} estimates for maximal operators associated to dispersive equations 2004 Yonggeun Cho
Yongsun Shim
+ Global estimates of maximal operators generated by dispersive equations 2005 Yonggeun Cho
Yongsun Shim
+ PDF Chat Maximal estimates and pointwise convergence for solutions of certain dispersive equations with radial initial data on Damek-Ricci spaces 2025 Utsav Dewan
+ PDF Chat Endpoint estimates for maximal operators associated to the wave equation 2025 C. Cho
Sang‐Hyuk Lee
Wenjuan Li
+ Weighted maximal estimates along curve associated with dispersive equations 2015 Yong Ding
Yaoming Niu
+ PDF Chat A maximal inequality associated to Schr\"{o}dinger type equation 2006 Yonggeun Cho
Sanghyuk Lee
Yongsun Shim
+ PDF Chat On smoothing estimates in modulation spaces and the nonlinear Schrödinger equation with slowly decaying initial data 2021 Robert Schippa
+ PDF Chat Sharp convergence rate on Schr\"{o}dinger type operators 2024 Meng Wang
Shuijiang Zhao
+ PDF Chat Weak Dispersive Estimates for Schrödinger Equations with Long Range Potentials 2009 Juan Antonio Barceló
Alberto Ruiz
Luis Vega
M. C. Vilela
+ PDF Chat Boundedness of maximal operators of Schrödinger type with complex time 2013 Andrew D. Bailey
+ An endpoint space–time estimate for the Schrödinger equation 2010 Sanghyuk Lee
Keith M. Rogers
Ana Vargas
+ On smoothing estimates in modulation spaces and the NLS with slowly decaying initial data 2021 Robert Schippa
+ Weak Dispersive estimates for Schrödinger equations with long range potentials 2008 J. A. Bercelo
Alberto Ruiz
Luis Vega
Mari Cruz Vilela
+ Sharp convergence rate on Schrödingertype operators 2025 Meng Wang
Shuijiang Zhao
+ A maximal inequality associated to Schrödinger type equation 2005 Yonggeun Cho
Sanghyuk Lee
Yongsun Shim
+ Almost global existence for some nonlinear Schrödinger equations on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi>𝕋</mml:mi> <mml:mi>d</mml:mi> </mml:msup></mml:math> in low regularity 2025 Joackim Bernier
Benoît Grébert
+ Estimates for multiparameter maximal operators of Schrödinger type 2013 Per Sjölin
Fernando Soria
+ A Note on Non-tangential Convergence for Schrödinger Operators 2020 Wenjuan Li
Huiju Wang
Dunyan Yan