Elementary Excitations of Quantum Critical<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mo stretchy="false">(</mml:mo><mml:mn>2</mml:mn><mml:mo>+</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math>-Dimensional Antiferromagnets

Type: Article

Publication Date: 2006-11-08

Citations: 5

DOI: https://doi.org/10.1103/physrevlett.97.197201

Abstract

It has been proposed that there are degrees of freedom intrinsic to quantum critical points that can contribute to quantum critical physics. We point out that this conclusion is quite general below the upper critical dimension. We show that in $(2+1)\mathrm{D}$ antiferromagnets Skyrmion excitations are stable at criticality and identify them as the critical excitations. We find exact solutions composed of Skyrmion and anti-Skyrmion superpositions, which we call topolons. We include the topolons in the partition function and renormalize by integrating out small size topolons and short wavelength spin waves. We obtain a correlation length exponent $\ensuremath{\nu}=0.690\text{ }666$ and anomalous dimension $\ensuremath{\eta}=0.0166$.

Locations

  • Physical Review Letters - View
  • arXiv (Cornell University) - View - PDF
  • PubMed - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ On Spin 1/2 Excitations and Quantum Criticality in Two Dimensional O(3) Antiferromagnets 2004 Zaira Nazario
David Santiago
+ PDF Chat Deconfined Quantum Critical Points 2016 T. Senthi
Ashvin Vishwanath
Leon Balents
Subir Sachdev
Matthew P. A. Fisher
+ PDF Chat Deconfined Quantum Critical Points 2010 T. Senthil
Ashvin Vishwanath
Leon Balents
Subir Sachdev
Matthew P. A. Fisher
+ PDF Chat Critical points at infinity, non-Gaussian saddles, and bions 2018 Alireza Behtash
Gerald V. Dunne
Thomas Schäfer
Tin Sulejmanpašić
Mithat Ünsal
+ PDF Chat A new series of 3D CFTs with $\mathrm{Sp}(N)$ global symmetry on fuzzy sphere 2024 Zheng Zhou
Yin-Chen He
+ PDF Chat The partition function zeroes of quantum critical points 2008 P. R. Crompton
+ PDF Chat Universal properties of the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>U</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math>current at deconfined quantum critical points: Comparison with predictions from gauge-gravity duality 2009 Flavio S. Nogueira
+ PDF Chat Topological excitations and their contribution to quantum criticality in D antiferromagnets 2006 Zaira Nazario
David Santiago
+ PDF Chat Quantum Electrodynamics in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>2</mml:mn><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math> Dimensions as the Organizing Principle of a Triangular Lattice Antiferromagnet 2024 Alexander Wietek
Sylvain Capponi
Andreas M. Läuchli
+ PDF Chat Quantum criticality in many-body parafermion chains 2021 Ville Lahtinen
Teresia Månsson
Eddy Ardonne
+ PDF Chat Realizing All<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>s</mml:mi><mml:mi>o</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>N</mml:mi><mml:msub><mml:mo stretchy="false">)</mml:mo><mml:mn>1</mml:mn></mml:msub></mml:math>Quantum Criticalities in Symmetry Protected Cluster Models 2015 Ville Lahtinen
Eddy Ardonne
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si0042.gif" overflow="scroll"><mml:mrow><mml:msub><mml:mrow><mml:mi>LaCu</mml:mi></mml:mrow><mml:mrow><mml:mn>6</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mi>Ag</mml:mi></mml:mrow><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>: A promising host of an elastic quantum critical point 2017 L. Poudel
Clarina dela Cruz
Michael Köehler
Michael A. McGuire
Veerle Keppens
David Mandrus
A. D. Christianson
+ PDF Chat Deconfined Quantum Critical Points: A Review 2024 T. Senthil
+ Soluble limit and criticality of fermions in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="double-struck">Z</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> gauge theories 2020 Elio J. König
Piers Coleman
A. M. Tsvelik
+ PDF Chat Incommensurate <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>2</mml:mn><mml:msub><mml:mi>k</mml:mi><mml:mi>F</mml:mi></mml:msub></mml:mrow></mml:math> density wave quantum criticality in two-dimensional metals 2019 Johannes Halbinger
Dimitri Pimenov
Matthias Punk
+ Floquet quantum critical points in (1+1) dimensions 2019 Xueda Wen
Jie-qiang Wu
+ PDF Chat Vacuum stability, fixed points, and phases of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>QED</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math> at large <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>N</mml:mi><mml:mi>f</mml:mi></mml:msub></mml:math> 2023 Lorenzo Di Pietro
Edoardo Lauria
Pierluigi Niro
+ PDF Chat Quantum criticality and universal scaling of a quantum antiferromagnet 2005 B. Lake
D. M. Tennant
Chris Frost
S. E. Nagler
+ Quantum Critical Spinon Deconfinement 2006 Zaira Nazario
David Santiago
+ PDF Chat Emergent Gauge Fields and Their Nonperturbative Effects in Correlated Electrons 2016 Ki‐Seok Kim
Akihiro Tanaka