Rate of convergence in probability to the Marchenko-Pastur law

Type: Article

Publication Date: 2004-06-01

Citations: 83

DOI: https://doi.org/10.3150/bj/1089206408

Abstract

It is shown that the Kolmogorov distance between the spectral distribution function of a random covariance matrix (1/p)XXT, where X is an n×p matrix with independent entries and the distribution function of the Marchenko-Pastur law is of order O(n-1/2) in probability. The bound is explicit and requires that the twelfth moment of the entries of the matrix is uniformly bounded and that p/n is separated from 1.

Locations

Similar Works

Action Title Year Authors
+ On the Rate of Convergence to the Marchenko--Pastur Distribution 2011 Friedrich Götze
Alexandre Tikhomirov
+ The rate of convergence of spectra of sample covariance matrices 2007 Friedrich Götze
А. Н. Тихомиров
+ PDF Chat The Rate of Convergence of Spectra of Sample Covariance Matrices 2010 Friedrich Götze
А. Н. Тихомиров
+ The rate of convergence of the expected spectral distribution function of a sample covariance matrix to the Marchenko-Pastur distribution 2009 А. Н. Тихомиров
+ Rate of Convergence of the Expected Spectral Distribution Function to the Marchenko -- Pastur Law 2014 Friedrich Götze
Alexandre Tikhomirov
+ Convergence rates to the Marchenko–Pastur type distribution 2011 Zhidong Bai
Jiang Hu
Zhou Wang
+ PDF Chat A note on the Marchenko-Pastur law for a class of random matrices with dependent entries 2012 Sean O’Rourke
+ PDF Chat Local Marchenko-Pastur law at the hard edge of sample covariance matrices 2013 Claudio Cacciapuoti
Anna Maltsev
Benjamin Schlein
+ Fluctuations of Marchenko–Pastur limit of random matrices with dependent entries 2017 Ayako Hasegawa
Noriyoshi Sakuma
Hiroaki Yoshida
+ PDF Chat Rate of convergence to the semi-circular law 2003 Friedrich Götze
А. Н. Тихомиров
+ Necessary and Sufficient Conditions for the Marchenko-Pastur Law for Sample Correlation Matrices 2023 Zhaorui DONG
J.K. Yao
+ PDF Chat Large sample covariance matrices of Gaussian observations with uniform correlation decay 2023 Michael Fleermann
Johannes Heiny
+ Large Sample Covariance Matrices of Gaussian Observations with Uniform Correlation Decay 2022 Michael Fleermann
Johannes Heiny
+ Sample Covariance Matrices and the Marčenko-Pastur Law 2009 Zhidong Bai
Jack W. Silverstein
+ PDF Chat Marchenko-Pastur law for a random tensor model 2023 Pavel Yaskov
+ Analysis of the Limiting Spectral Distribution of Large Random Matrices of the Marcenko-Pastur Type 2025 Haoran Li
+ Spectral Density of Sample Covariance Matrices of Colored Noise 2008 Emil Dolezal
P. Šeba
+ Marchenko-Pastur Law for Tyler's M-estimator 2014 Teng Zhang
Xiuyuan Cheng
Amit Singer
+ Marchenko-Pastur law for a random tensor model 2021 Pavel Yaskov
+ Local Marchenko–Pastur law at the hard edge of the sample covariance ensemble 2023 Anastasis Kafetzopoulos
Anna Maltsev