Beltrami equations with coefficient in the Sobolev space $W^{1,p}$

Type: Article

Publication Date: 2009-01-01

Citations: 30

DOI: https://doi.org/10.5565/publmat_53109_09

Abstract

We study the removable singularities for solutions to the Beltrami equation ∂f = µ ∂f , where µ is a bounded function, µ ∞ ≤ K-1 K+1 < 1, and such that µ ∈ W 1,p for some p ≤ 2. Our results are based on an extended version of the well known Weyl's lemma, asserting that distributional solutions are actually true solutions.Our main result is that quasiconformal mappings with compactly supported Beltrami coefficient µ ∈ W 1,p , 2K 2 K 2 +1 < p ≤ 2, preserve compact sets of σ-finite length and vanishing analytic capacity, even though they need not be bilipschitz.

Locations

  • Publicacions Matemàtiques - View
  • arXiv (Cornell University) - View - PDF
  • Project Euclid (Cornell University) - View - PDF
  • LA Referencia (Red Federada de Repositorios Institucionales de Publicaciones Científicas) - View - PDF

Similar Works

Action Title Year Authors
+ Beltrami equations with coefficient in the Sobolev space $W^{1,p}$ 2007 Albert Clop
Daniel Faraco
Joan Mateu
Joan Orobitg
Xiao Zhong
+ Beltrami equations with coecient in the Sobolev space 2005 Albert Clop
Daniel Faraco
Jaume Mateu
Joan Orobitg
Xiangfu Zhong
+ Beltrami equations with coefficient in the fractional Sobolev space $W^{\theta , \frac 2{\theta }}$ 2016 Antonio L. Baisón
Albert Clop
Joan Orobitg
+ Beltrami equations with coefficient in the fractional Sobolev space $W^{θ, \frac2θ}$ 2015 Antonio L. Baisón
Albert Clop
Joan Orobitg
+ Distributional solutions of the Beltrami equation 2018 Antonio L. Baisón
Albert Clop
Joan Orobitg
+ Distributional solutions of the Beltrami equation 2017 Antonio L. Baisón
Albert Clop
Joan Orobitg
+ PDF Chat Analytic capacity and quasiconformal mappings with $W^{1,2}$ Beltrami coefficient 2008 Albert Clop
Xavier Tolsa
+ Beltrami equations with coefficient in the fractional Sobolev space $W^{\theta, \frac2{\theta}}$ 2015 Antonio L. Baisón
Albert Clop
Joan Orobitg
+ The Classical Beltrami Equation ||µ||∞&lt;1 2012 Vladimir Gutlyanskiǐ
Vladimir Ryazanov
Uri Srebro
Eduard Yakubov
+ Regularity of $$\log (\partial \phi )$$ for the Solutions of Beltrami Equations with Coefficient in the Sobolev Space $$W^{1,p}_c({\mathbb {C}})$$ 2021 Antonio L. Baisón Olmo
Victor Cruz
+ Beltrami operators in the plane 2001 Kari Astala
Tadeusz Iwaniec
Eero Saksman
+ On planar Beltrami equations and Hoelder regularity 2006 Tonia Ricciardi
+ On Beltrami equations and Hoelder regularity 2006 Tonia Ricciardi
+ Non-stretch mappings for a sharp estimate of the Beurling–Ahlfors operator 2013 Xingdi Chen
Tao Qian
+ The Beltrami equations for quasiconformal mappings on strongly pseudoconvex hypersurfaces 2012 Qingyan Wu
W. Wang
+ Weighted estimates for Beltrami equations 2011 Albert Clop
Víctor Cruz
+ Weighted estimates for Beltrami equations 2011 Albert Clop
Víctor L. Cruz
+ Distortion of Hausdorff measures and improved Painlevé removability for quasiregular mappings 2006 Kari Astala
Albert Clop
Joan Mateu
Joan Orobitg
Ignacio Uriarte-Tuero
+ Global smoothness of quasiconformal mappings in the Triebel-Lizorkin scale 2019 Kari Astala
Martí Prats
Eero Saksman
+ PDF Chat Beltrami equations in the plane and Sobolev regularity 2017 Martí Prats