MCAR is not necessary for the complete cases to constitute a simple random subsample of the target sample

Type: Article

Publication Date: 2013-05-23

Citations: 5

DOI: https://doi.org/10.1177/0962280213490360

Locations

  • Statistical Methods in Medical Research - View
  • PubMed - View

Similar Works

Action Title Year Authors
+ PDF Chat Validity of Complete Case Analysis Depends on the Target Population 2024 Michael Websterā€Clark
Rachael Ross
+ PDF Chat Are All Biases Missing Data Problems? 2015 Chanelle J. Howe
Lauren E. Cain
Joseph W. Hogan
+ PDF Chat Accounting for missing data in statistical analyses: multiple imputation is not always the answer 2019 Rachael A. Hughes
Jon Heron
Jonathan A C Sterne
Kate Tilling
+ Missing Data: A Non-ignorable Issue in Modern Biostatistics 2017 Baojiang Chen
Kendra K. Schmid
+ An integrated approach to test for missing not at random 2022 Adetola Adedamola Adediran
Jack Noonan
Robin Mitra
Stefanie Biedermann
+ Unpredictable bias when using the missing indicator method or complete case analysis for missing confounder values: an empirical example 2010 Mirjam J. Knol
Kristel J.M. Janssen
A. Rogier T. Donders
Toine C. G. Egberts
Eibert R. Heerdink
Diederick E. Grobbee
Karel G.M. Moons
Mirjam I. Geerlings
+ Multiple imputation using auxiliary imputation variables that only predict missingness can increase bias due to data missing not at random 2024 Elinor Curnow
Rosie Cornish
Jon Heron
James R. Carpenter
Kate Tilling
+ Revisiting the conditions for ignorability of the response mechanism in analyses with incomplete data 2018 John C. Galati
+ On the bias of completeā€ and shiftingā€case metaā€regressions with missing covariates 2022 Jacob M. Schauer
Jihyun Lee
Karina Diaz
Terri Pigott
+ A Different Approach to the Problem of Missing Data 2015 Gu Xiao
Norman Matloff
+ PDF Chat Missing data: A statistical framework for practice 2021 James R. Carpenter
Melanie Smuk
+ PDF Chat Multiple imputation of missing data under missing at random: including a collider as an auxiliary variable in the imputation model can induce bias 2023 Elinor Curnow
Kate Tilling
Jon Heron
Rosie Cornish
James R. Carpenter
+ PDF Chat Multiple imputation assuming missing at random: auxiliary imputation variables that only predict missingness can increase bias due to data missing not at random 2023 Elinor Curnow
Rosie Cornish
Jon Heron
James R. Carpenter
Kate Tilling
+ Missing data ā€” mechanisms and possible solutions / Datos ausentes: mecanismos y posibles soluciones 2017 Haim Bar
+ PDF Chat Missing data, part 4. Missing data in the outcomes vs in the covariates 2022 Tra My Pham
Nikolaos Pandis
Ian R. White
+ Missing Values and Subsampling 1994 Werner Vach
+ Exploring the validity of the complete case analysis for regression models with a right-censored covariate 2023 Marissa C. Ashner
Tanya P. Garcia
+ Bias and efficiency of multiple imputation compared with completeā€case analysis for missing covariate values 2010 Ian R. White
John B. Carlin
+ PDF Chat Improving upon the efficiency of complete case analysis when covariates are MNAR 2014 Jonathan Bartlett
James R. Carpenter
Kate Tilling
Stijn Vansteelandt
+ PDF Chat Statistical methods without estimating the missingness mechanism: a discussion of ā€˜statistical inference for nonignorable missing data problems: a selective reviewā€™ by Niansheng Tang and Yuanyuan Ju 2018 Jiwei Zhao