On the number of solutions of exponential congruences

Type: Article

Publication Date: 2011-01-01

Citations: 20

DOI: https://doi.org/10.4064/aa148-1-7

Abstract

For a prime $p$ and an integer $a \in \Z$ we obtain nontrivial upper bounds on the number of solutions to the congruence $x^x \equiv a \pmod p$, $1 \le x \le p-1$. We use these estimates to estimate the number of solutions to the congruence $x^x \equiv y^y \pmod p$, $1 \le x,y \le p-1$, which is of cryptographic relevance.

Locations

  • Acta Arithmetica - View - PDF
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ On the Number of Solutions of Exponential Congruences 2010 Antal Balog
Kevin Broughan
Igor E. Shparlinski
+ On the Number of Solutions of Exponential Congruences 2010 Antal Balog
Kevin Broughan
Igor E. Shparlinski
+ On multiplicative congruences 2008 M. Z. Garaev
+ PDF Chat Small solutions of generic ternary quadratic congruences to general moduli 2024 Stephan Baier
Aishik Chattopadhyay
+ Congruences for Ap\'ery-like numbers 2018 Zhi-Hong Sun
+ PDF Chat Congruences and Rational Exponential Sums with the Euler Function 2006 William D. Banks
Igor E. Shparlinski
+ Small solutions of congruences with prime modulus 1986 Wolfgang M. Schmidt
+ Computing solutions to the congruence <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="mml18" display="inline" overflow="scroll" altimg="si18.gif"><mml:msup><mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msup><mml:mo>+</mml:mo><mml:msup><mml:mrow><mml:mn>2</mml:mn></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msup><mml:mo>+</mml:mo><mml:mo>⋯</mml:mo><mml:mo>+</mml:mo><mml:msup><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mi>n</… 2018 Max A. Alekseyev
J. M. Grau
Antonio M. Oller‐Marcén
+ On Certain Modular Equations 2004 Marius Constantin Ionescu
+ PDF Chat The congruence $x^{x}\equiv \lambda \pmod p$ 2015 Javier Cilleruelo
M. Z. Garaev
+ PDF Chat Small Solutions of generic ternary quadratic congruences 2024 Stephan Baier
Aishik Chattopadhyay
+ The congruence $x^n\equiv -a^n\pmod{m}$: Solvability and related OEIS sequences 2024 Jorma K. Merikoski
Pentti Haukkanen
Timo Tossavainen
+ PDF Chat On the largest prime factor of n!+ 2^n-1 2005 Florian Luca
Igor E. Shparlinski
+ On the number of solutions of congruences and equations in $GF[q,x]$ 1971 Leslie E. Shader
+ PDF Chat Small solutions of congruences over algebraic number fields 1987 Todd Cochrane
+ On the distribution of modular square roots of primes 2020 Ilya D. Shkredov
Igor E. Shparlinski
Alexandru Zaharescu
+ PDF Chat On the congruence $$1^m + 2^m + \cdots + m^m\equiv n \pmod {m}$$ 1 m + 2 m + ⋯ + m m ≡ n ( mod m ) with $$n\mid m$$ n ∣ m 2014 J. M. Grau
Antonio M. Oller‐Marcén
Jonathan Sondow
+ On the number of ABC solutions with restricted radical sizes 2014 Daniel M. Kane
+ Solutions to polynomial congruenceswith variables restricted to a box 2024 Todd Cochrane
Konstantinos Kydoniatis
Craig Spencer
+ A Formula for the Number of solutions of the Congruence αx~a+βy~b+γz~c≡0(modp~n) 1995 韩清