Operational criterion and constructive checks for the separability of low-rank density matrices

Type: Article

Publication Date: 2000-08-17

Citations: 151

DOI: https://doi.org/10.1103/physreva.62.032310

Abstract

We consider low rank density operators $\varrho$ supported on a $M\times N$ Hilbert space for arbitrary $M$ and $N$ ($M\leq N$) and with a positive partial transpose (PPT) $\varrho^{T_A}\ge 0$. For rank $r(\varrho) \leq N$ we prove that having a PPT is necessary and sufficient for $\varrho$ to be separable; in this case we also provide its minimal decomposition in terms of pure product states. It follows from this result that there is no rank 3 bound entangled states having a PPT. We also present a necessary and sufficient condition for the separability of generic density matrices for which the sum of the ranks of $\varrho$ and $\varrho^{T_A}$ satisfies $r(\varrho)+r(\varrho^{T_A}) \le 2MN-M-N+2$. This separability condition has the form of a constructive check, providing thus also a pure product state decomposition for separable states, and it works in those cases where a system of couple polynomial equations has a finite number of solutions, as expected in most cases.

Locations

  • Physical Review A - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Separability in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mn>2</mml:mn><mml:mo>×</mml:mo><mml:mi>N</mml:mi></mml:math>composite quantum systems 2000 Barbara Kraus
J. I. Cirac
Siniša Karnas
Maciej Lewenstein
+ PDF Chat Separability and entanglement in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:mrow><mml:mo>⊗</mml:mo><mml:mrow><mml:msup><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:mrow><mml:mo>⊗</mml:mo><mml:mrow><mml:msup><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mi>N</mml:mi></mml:mrow></mml:msup></mml:… 2001 Siniša Karnas
Maciej Lewenstein
+ Rank Two Bound Entangled States Do Not Exist 1999 Paweł Horodecki
John A. Smolin
Barbara M. Terhal
Ashish V. Thapliyal
+ Rank Two Bipartite Bound Entangled States Do Not Exist 1999 Paweł Horodecki
John A. Smolin
Barbara M. Terhal
Ashish V. Thapliyal
+ PDF Chat Entanglement Criteria for All Bipartite Gaussian States 2001 G. Giedke
Barbara Kraus
Maciej Lewenstein
J. I. Cirac
+ Bounding the separable rank via polynomial optimization 2021 Sander Gribling
Monique Laurent
Andries Steenkamp
+ Noisy bound entangled states: construction and their detection 2018 Saronath Halder
Ritabrata Sengupta
+ Separability Criterion for multipartite quantum states based on the Bloch representation of density matrices 2007 Ali Saif M. Hassan
Pramod S. Joag
+ PDF Chat Is absolute separability determined by the partial transpose? 2015 Srinivasan Arunachalam
Nathaniel Johnston
Vincent M. Russo
+ PDF Chat Separable approximations of density matrices of composite quantum systems 2001 Siniša Karnas
Maciej Lewenstein
+ Separability criteria based on the Bloch representation of density matrices 2006 Julio I. de Vicente
+ PDF Chat Separability criteria based on the Bloch representation of density matrices 2007 J. De Vicente
+ Is absolute separability determined by the partial transpose? 2014 Srinivasan Arunachalam
Nathaniel Johnston
Vincent M. Russo
+ Detecting qubit entanglement : an alternative to the PPT test 2017 Joseph Samuel
Kumar Shivam
Supurna Sinha
+ PDF Chat Witnessing quantum discord in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>2</mml:mn><mml:mo>×</mml:mo><mml:mi>N</mml:mi></mml:mrow></mml:math>systems 2010 Bogna Bylicka
Dariusz Chruściński
+ Is absolute separability determined by the partial transpose 2014 Srinivasan Arunachalam
Nathaniel Johnston
Vincent M. Russo
+ PDF Chat Distillability and PPT entanglement of low-rank quantum states 2011 Lin Chen
Dragomir Ž. Đoković
+ PDF Chat Approximating the set of separable states using the positive partial transpose test 2010 Salman Beigi
Peter W. Shor
+ Entanglement distillation in terms of Schmidt rank and matrix rank 2023 Tianyi Ding
Lin Chen
+ PDF Chat Certifying Separability in Symmetric Mixed States of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>N</mml:mi></mml:math>Qubits, and Superradiance 2014 Elie Wolfe
Susanne F. Yelin