The limits of error correction with l<inf>p</inf> decoding

Type: Article

Publication Date: 2010-06-01

Citations: 0

DOI: https://doi.org/10.1109/isit.2010.5513613

Download PDF

Abstract

An unknown vector f in R <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</sup> can be recovered from corrupted measurements y = Af + e where A <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m×n</sup> (m ≥ n) is the coding matrix if the unknown error vector e is sparse. We investigate the relationship of the fraction of errors and the recovering ability of l <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p</sub> -minimization (0 <; p ≤ 1) which returns a vector x that minimizes the "l <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p</sub> -norm" of y-Ax. We give sharp thresholds of the fraction of errors that is recoverable. If e is an arbitrary unknown vector, the threshold strictly decreases from 0.5 to 0.239 as p increases from 0 to 1. If e has fixed support and fixed signs on the support, the threshold is 2/3 for all p in (0, 1), and 1 for p = 1.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ The Limits of Error Correction with lp Decoding 2010 Meng Wang
Weiyu Xu
Ao Tang
+ PDF Chat Dense error correction via l1-minimization 2009 John Wright
Yi Ma
+ Decoding by Linear Programming 2005 Emmanuel J. Candès
Terence Tao
+ PDF Chat Decoding by Linear Programming 2005 Emmanuel J. Candès
Terence Tao
+ PDF Chat Information-Theoretic Limits on Sparse Signal Recovery: Dense versus Sparse Measurement Matrices 2010 Wei Wang
Martin J. Wainwright
Kannan Ramchandran
+ PDF Chat Error-Correction for Sparse Support Recovery Algorithms 2022 Mohammad Mehrabi
Aslan Tchamkerten
+ On the Performance of Sparse Recovery via L_p-minimization (0<=p <=1) 2010 Meng Wang
Weiyu Xu
Ao Tang
+ PDF Chat Uniform Recovery Bounds for Structured Random Matrices in Corrupted Compressed Sensing 2018 Peng Zhang
Lu Gan
Cong Ling
Sumei Sun
+ Improved Sparse Recovery Thresholds with Two-Step Reweighted $\ell_1$ Minimization 2010 M. Amin Khajehnejad
Weiyu Xu
Salman Avestimehr
Babak Hassibi
+ Correcting Errors in Linear Measurements and Compressed Sensing of Multiple Sources 2013 Alexander Petukhov
Inna Kozlov
+ Correcting Errors in Linear Measurements and Compressed Sensing of Multiple Sources 2013 A. K. Petukhov
Inna Kozlov
+ Improved Sparse Recovery Thresholds with Two-Step Reweighted $\ell_1$ Minimization 2010 M. Amin Khajehnejad
Weiyu Xu
Salman Avestimehr
Babak Hassibi
+ On the Performance of Sparse Recovery via L_p-minimization (0&lt;=p &lt;=1) 2010 Meng Wang
Weiyu Xu
Ao Tang
+ PDF Chat Error-Correction for Sparse Support Recovery Algorithms 2021 Mohammad Mehrabi
Aslan Tchamkerten
+ PDF Chat Error correction via linear programming 2005 Emmanuel J. Candès
Mark Rudelson
Terence Tao
Roman Vershynin
+ Compressed Sensing with Very Sparse Gaussian Random Projections 2014 Ping Li
Cun-Hui Zhang
+ Does $\ell_p$-minimization outperform $\ell_1$-minimization? 2015 Le Zheng
Arian Maleki
Xiaodong Wang
Teng Fei Long
+ PDF Chat Weighted one-norm minimization with inaccurate support estimates: Sharp analysis via the null-space property 2015 Hassan Mansour
Rayan Saab
+ Compressed Sensing with Very Sparse Gaussian Random Projections 2014 Ping Li
Cun-Hui Zhang
+ Dense Error Correction Via $\ell^1$-Minimization 2010 John Wright
Yi Ma

Works That Cite This (0)

Action Title Year Authors