A fixed point theorem for mappings satisfying a general contractive condition of integral type

Type: Article

Publication Date: 2002-01-01

Citations: 481

DOI: https://doi.org/10.1155/s0161171202007524

Abstract

We analyze the existence of fixed points for mappings defined on complete metric spaces<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="$(X,d)$" id="E1"><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:mi>X</mml:mi><mml:mo>,</mml:mo><mml:mi>d</mml:mi></mml:mrow><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math>satisfying a general contractive inequality of integral type. This condition is analogous to Banach-Caccioppoli's one; in short, we study mappings<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="$f:X\rightarrow X$" id="E2"><mml:mrow><mml:mi>f</mml:mi><mml:mo>:</mml:mo><mml:mi>X</mml:mi><mml:mo>→</mml:mo><mml:mi>X</mml:mi></mml:mrow></mml:math>for which there exists a real number<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="$c\in\, ]0,1[$" id="E3"><mml:mrow><mml:mi>c</mml:mi><mml:mo>∈</mml:mo><mml:mrow><mml:mo>]</mml:mo><mml:mrow><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:mn>1</mml:mn></mml:mrow><mml:mo>[</mml:mo></mml:mrow></mml:mrow></mml:math>, such that for each<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="$x,y \in X$" id="E4"><mml:mrow><mml:mi>x</mml:mi><mml:mo>,</mml:mo><mml:mi>y</mml:mi><mml:mo>∈</mml:mo><mml:mi>X</mml:mi></mml:mrow></mml:math>we have<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="$\int_0^{d(fx,fy)}\varphi (t)dt\leq c\int_0^{d(x,y)}\varphi (t)dt$" id="E5"><mml:mrow><mml:msubsup><mml:mo>∫</mml:mo><mml:mn>0</mml:mn><mml:mrow><mml:mi>d</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:mi>f</mml:mi><mml:mi>x</mml:mi><mml:mo>,</mml:mo><mml:mi>f</mml:mi><mml:mi>y</mml:mi></mml:mrow><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:msubsup><mml:mi>φ</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>t</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mi>d</mml:mi><mml:mi>t</mml:mi><mml:mo>≤</mml:mo><mml:mi>c</mml:mi><mml:msubsup><mml:mo>∫</mml:mo><mml:mn>0</mml:mn><mml:mrow><mml:mi>d</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:mi>x</mml:mi><mml:mo>,</mml:mo><mml:mi>y</mml:mi></mml:mrow><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:msubsup><mml:mi>φ</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>t</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mi>d</mml:mi><mml:mi>t</mml:mi></mml:mrow></mml:math>, where<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="$\varphi:[0,+\infty[\rightarrow [0,+\infty]$" id="E6"><mml:mrow><mml:mi>φ</mml:mi><mml:mo>:</mml:mo><mml:mrow><mml:mo>[</mml:mo><mml:mrow><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:mo>+</mml:mo><mml:mi>∞</mml:mi></mml:mrow><mml:mo>[</mml:mo></mml:mrow><mml:mo>→</mml:mo><mml:mrow><mml:mo>[</mml:mo><mml:mrow><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:mo>+</mml:mo><mml:mi>∞</mml:mi></mml:mrow><mml:mo>]</mml:mo></mml:mrow></mml:mrow></mml:math>is a Lebesgue-integrable mapping which is summable on each compact subset of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="$[0, +\infty[$" id="E7"><mml:mrow><mml:mrow><mml:mo>[</mml:mo><mml:mrow><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:mo>+</mml:mo><mml:mi>∞</mml:mi></mml:mrow><mml:mo>[</mml:mo></mml:mrow></mml:mrow></mml:math>, nonnegative and such that for each<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="$\varepsilon&gt;0$" id="E8"><mml:mi>ε</mml:mi><mml:mo>&gt;</mml:mo><mml:mn>0</mml:mn></mml:math>,<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="$\int_0^\varepsilon\varphi(t)dt&gt;0$" id="E9"><mml:msubsup><mml:mo>∫</mml:mo><mml:mn>0</mml:mn><mml:mi>ε</mml:mi></mml:msubsup><mml:mrow><mml:mi>φ</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>t</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mi>d</mml:mi><mml:mi>t</mml:mi></mml:mrow><mml:mo>&gt;</mml:mo><mml:mn>0</mml:mn></mml:math>.

Locations

  • International Journal of Mathematics and Mathematical Sciences - View - PDF
  • DOAJ (DOAJ: Directory of Open Access Journals) - View

Similar Works

Action Title Year Authors
+ A FIXED POINT THEOREM IN A GENERALIZED METRIC SPACE FOR MAPPINGS SATISFYING A CONTRACTIVE CONDITION OF INTEGRAL TYPE 2009 Bessem Samet
+ Fixed Point Theorems for Contractive Mappings of Integral Type 2019 Robab Hamlbarani Haghi
Negar Bakhshi Sadabadi
+ A Fixed-Point Theorem For Mapping Satisfying a General Contractive Condition Of Integral Type Depended an Another Function 2009 Sirous Moradi
A. Beiranvand
+ PDF Chat Common Fixed Point Results for Generalized <math xmlns="http://www.w3.org/1998/Math/MathML" id="M1"> <mfenced open="(" close=")"> <mrow> <mi>g</mi> <mo>−</mo> <msub> <mrow> <mi>α</mi> </mrow> <mrow> <msup> <mrow> <mi>s</mi> </mrow> <mrow> <mi>p</mi> </mrow> </msup> </mrow> </msub> <mo>,</mo> <mi>ψ</mi> <mo>,</mo> <mi>φ</mi> </mrow> </mfenced> </math> Contractive Mappings with Applications 2021 LI Jian-ju
Hongyan Guan
+ PDF Chat Fixed Points of Modified<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:mi>F</mml:mi></mml:mrow></mml:math>-Contractive Mappings in Complete Metric-Like Spaces 2015 Hamed Alsulami
Erdal Karapınar
Hossein Piri
+ PDF Chat An Application of Fixed Point Theory to a Nonlinear Differential Equation 2014 Ali Farajzadeh
Anchalee Kaewcharoen
Somyot Plubtieng
+ PDF Chat Common Fixed-Point Theorems of Generalized<math xmlns="http://www.w3.org/1998/Math/MathML" id="M1"><mfenced open="(" close=")" separators="|"><mrow><mi>ψ</mi><mo>,</mo><mi>φ</mi></mrow></mfenced><mo>−</mo></math>Weakly Contractive Mappings in<math xmlns="http://www.w3.org/1998/Math/MathML" id="M2"><mi>b</mi><mo>−</mo></math>Metric-Like Spaces and Application 2021 Hongyan Guan
LI Jian-ju
+ PDF Chat Two fixed‐point theorems for mappings satisfying a general contractive condition of integral type 2003 Β. E. Rhoades
+ PDF Chat Some Integral Type Fixed Point Theorems for Non-Self-Mappings Satisfying Generalized<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mo stretchy="false">(</mml:mo><mml:mi>ψ</mml:mi><mml:mo>,</mml:mo><mml:mi>φ</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>-Weak Contractive Conditions in Symmetric Spaces 2014 Marwan Amin Kutbi
Mohammad Imdad
Sunny Chauhan
Wutiphol Sintunavarat
+ A fixed point theorem for contractive mappings that characterizes metric completeness 2012 Mortaza Abtahi
+ A fixed point theorem for contractive mappings that characterizes metric completeness 2012 Mortaza Abtahi
+ PDF Chat Common Fixed Point Theorems for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:mi>α</mml:mi></mml:mrow></mml:math>-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:mrow><mml:mi>ψ</mml:mi></mml:mrow></mml:math>-Contractive Type Mappings 2013 Jalal Hassanzadeasl
+ PDF Chat Some fixed point theorems for contractive mappings of integral type 2017 Zeqing Liu
Yuqing Wang
Shin Min Kang
Young Chel Kwun
+ PDF Chat Fixed point theorems for mappings with a contractive iterate at a point 1977 Janusz Matkowski
+ Fixed point results for generalized<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:mrow><mml:mo>(</mml:mo><mml:mi>ψ</mml:mi><mml:mo>,</mml:mo><mml:mi>ϕ</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math>-weak contractions with an application to system of non-linear integral equations 2017 Noor Jamal
Muhammad Sarwar
Mohammad Imdad
+ A TF-Contractive Fixed Point Theorem in a General Metric Space 2013 Zong Hu Xiu
+ A Fixed Point Theorem For Weakly Compatible Mappings Satisfying A General Contractive Condition Of Operator Type. 2013 İshak Altun
Duran Türkoğlu
+ Fixed Point Theorems for the Maps Satisfying Contractive Condition of Integral Type in Metric Spaces 2017 Avinash Chandra
+ PDF Chat Fixed Point Results for Various<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:mi>α</mml:mi></mml:mrow></mml:math>-Admissible Contractive Mappings on Metric-Like Spaces 2014 Saleh Abdullah Al-Mezel
Chi-Ming Chen
Erdal Karapınar
Vladimir Rakočević
+ PDF Chat On Some Fixed Point Results for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:msup><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mo>+</mml:mo></mml:mrow></mml:msup></mml:mrow></mml:math>-Type Contraction Mappings in Metric Spaces 2015 H. K. Pathak
Rosana Rodrı́guez-López

Works That Cite This (459)

Action Title Year Authors
+ Fixed Point Theorem of Modified S-Iteration Process for Ciric Quasi Contractive Operator in CAT(0) spaces 2014 G. S. Saluja
+ PDF Chat Fixed Point Theorem in Fuzzy Metric Spaces Satisfying E.A Property 2012 Vishal Gupta
Ashima Kanwar
+ <scp><i>R</i>‐weak</scp> commutativity, examples, and applications 2020 Servet Kütükçü
+ PDF Chat Various contractions in generalized metric space 2020 Savita Rathee
Kusum Dhingra
Anil Kumar
+ PDF Chat Contraction, Lebesgue and Common Fixed Point Property of Fuzzy Metric Spaces 2020 Gauri Shanker Sao
Swati Verma
+ PDF Chat Common Fixed Point Results for Set-valued Integral Type Contractions on Metric Spaces with Directed Graph 2020 Saadia Benchabane
Smaïl Djebali
Talat Nazir
+ PDF Chat Common fixed points under contractive conditions of integral type 2020 Hakima Bouhadjera
+ PDF Chat Super metric spaces 2022 Erdal Karapınar
Farshid Khojasteh
+ PDF Chat Coupled Coincidence Point Results for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>ψ</mml:mi><mml:mo>,</mml:mo><mml:mi>α</mml:mi><mml:mo>,</mml:mo><mml:mi>β</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:math>-Weak Contractions in Partially Ordered Metric Spaces 2012 A. Razani
Vahid Parvaneh
+ Some fixed point theorems using weaker Meir–Keeler function in metric spaces with<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mrow><mml:mi>w</mml:mi><mml:mo>−</mml:mo></mml:mrow></mml:math>distance 2018 Hossein Lakzian
Β. E. Rhoades