Separation of trajectories and its relation to entropy for intermittent systems with a zero Lyapunov exponent

Type: Article

Publication Date: 2010-07-14

Citations: 20

DOI: https://doi.org/10.1103/physreve.82.016209

Abstract

One dimensional intermittent maps with stretched exponential separation of nearby trajectories are considered. When time goes infinity the standard Lyapunov exponent is zero. We investigate the distribution of $\lambda_{\alpha}= \sum_{i=0}^{t-1} \ln \left| M'(x_i) \right|/t^{\alpha}$, where $\alpha$ is determined by the nonlinearity of the map in the vicinity of marginally unstable fixed points. The mean of $\lambda_{\alpha}$ is determined by the infinite invariant density. Using semi analytical arguments we calculate the infinite invariant density for the Pomeau-Manneville map, and with it obtain excellent agreement between numerical simulation and theory. We show that $\alpha \left< \lambda_{\alpha}\right>$ is equal to Krengel's entropy and to the complexity calculated by the Lempel-Ziv compression algorithm. This generalized Pesin's identity shows that $\left< \lambda_{\alpha}\right>$ and Krengel's entropy are the natural generalizations of usual Lyapunov exponent and entropy for these systems.

Locations

  • Physical Review E - View
  • arXiv (Cornell University) - View - PDF
  • PubMed - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Pesin-Type Identity for Intermittent Dynamics with a Zero Lyaponov Exponent 2009 Nickolay Korabel
Eli Barkai
+ $1/f$ Spectrum and 1-Stable Law in One-Dimensional Intermittent Map with Uniform Invariant Measure and Nekhoroshev Stability 2014 Soya Shinkai
Yôji Aizawa
+ PDF Chat Number of first-passage times as a measurement of information for weakly chaotic systems 2014 Pierre Nazé
Roberto Venegeroles
+ PDF Chat Spectral analysis and an area-preserving extension of a piecewise linear intermittent map 2007 Tomoshige Miyaguchi
Yôji Aizawa
+ PDF Chat 1/<i>f</i> Spectrum and 1-Stable Law in One-Dimensional Intermittent Map with Uniform Invariant Measure and Nekhoroshev Stability 2012 Soya Shinkai
Yôji Aizawa
+ PDF Chat Numerical estimate of infinite invariant densities: application to Pesin-type identity 2013 Nickolay Korabel
Eli Barkai
+ Predictability of Lyapunov subexponential instability 2014 Pierre Nazé
Roberto Venegeroles
+ Clustering of exponentially separating trajectories 2010 Michael Wilkinson
B. Mehlig
K. Gustavsson
Erik Werner
+ On the entropy devil's staircase in a family of gap-tent maps 1998 Karol Życzkowski
Erik M. Bollt
+ On the entropy devil's staircase in a family of gap-tent maps 1998 Karol Życzkowski
Erik M. Bollt
+ PDF Chat Concept of complexity in random dynamical systems 1996 Vittorio Loreto
Giovanni Paladin
Angelo Vulpiani
+ Detecting focusing motion in nonintegrable Hamiltonian system 2009 Cesar Manchein
Marcus W. Beims
Jan M. Rost
+ Dynamical transitions and aging in the superdiffusive Pomeau-Manneville map 2022 Samuel Brevitt
Rainer Klages
+ Footprints of sticky motion in the phase space of higher dimensional nonintegrable conservative systems 2009 Cesar Manchein
Marcus W. Beims
Jan M. Rost
+ PDF Chat Recurrence-time statistics in non-Hamiltonian volume-preserving maps and flows 2015 Rafael M. da Silva
Marcus W. Beims
Cesar Manchein
+ PDF Chat Thermodynamic phase transitions for Pomeau-Manneville maps 2012 Roberto Venegeroles
+ Statistics of trajectory separation in noisy dynamical systems 1992 Arkady Pikovsky
+ PDF Chat Convergence to the critical attractor of dissipative maps: Log-periodic oscillations, fractality, and nonextensivity 2000 F. A. B. F. de Moura
Uǧur Tırnaklı
M. L. Lyra
+ Correlation between the Hurst exponent and the maximal Lyapunov exponent: examining the Chirikov standard map 2015 Mariusz Tarnopolski
+ PDF Chat Dynamical and transport properties in a family of intermittent area-preserving maps 2008 Roberto Artuso
Lucia Cavallasca
Giampaolo Cristadoro