$L^{p}$-theory for strong solutions to fluid-rigid body interaction in Newtonian and generalized Newtonian fluids

Type: Article

Publication Date: 2012-08-03

Citations: 63

DOI: https://doi.org/10.1090/s0002-9947-2012-05652-2

Abstract

Consider the system of equations describing the motion of a rigid body immersed in a viscous, incompressible fluid of Newtonian or generalized Newtonian type. The class of fluids considered includes in particular shear-thinning or shear-thickening fluids of power-law type of exponent $d\geq 1$. We develop a method to prove that this system admits a unique, local, strong solution in the $L^p$-setting. The approach presented in the case of generalized Newtonian fluids is based on the theory of quasi-linear evolution equations and requires that the exponent $p$ satisfies the condition $p>5$.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ The $L^p$-approach to the fluid-rigid body interaction problem for compressible fluids 2015 Matthias Hieber
Miho Murata
+ Strong Solutions for Generalized Newtonian Fluids 2005 Lars Diening
Michael Růžička
+ PDF Chat Temporal decay of strong solutions for generalized Newtonian fluids with variable power-law index 2022 Seungchan Ko
+ Weak solutions for Euler systems with non-local interactions 2015 José A. Carrillo
Eduard Feireisl
Piotr Gwiazda
Agnieszka Świerczewska-Gwiazda
+ Weak solutions for Euler systems with non-local interactions 2015 José A. Carrillo
Eduard Feireisl
Piotr Gwiazda
Agnieszka Świerczewska-Gwiazda
+ Weak Solutions for a Class of Non-Newtonian Fluids with Energy Transfer 2000 Luisa Consiglieri
+ Lp-strong solution to fluid-rigid body interaction system with Navier slip boundary condition 2019 Hind Al Baba
Amrita Ghosh
Boris Muha
Šárka Nečasová
+ Local-in-time existence of strong solutions to a class of compressible non-Newtonian Navier-Stokes equations 2020 Martin Kalousek
Václav Mácha
Šárka Nečasová
+ Local-in-time existence of strong solutions to a class of compressible non-Newtonian Navier-Stokes equations 2020 Martin Kalousek
Václav Mácha
Šárka Nečasová
+ PDF Chat On the existence of strong solutions for unsteady motion of incompressible chemically reacting generalized Newtonian fluid 2024 Kyueon Choi
Kyungkeun Kang
Seungchan Ko
+ Lp-strong solution to fluid-rigid body interaction system with Navier slip boundary condition 2019 Hind Al Baba
Amrita Ghosh
Boris Muha
Šárka Nečasová
+ Non-Newtonian thin-film equations: global existence of solutions, gradient-flow structure and guaranteed lift-off 2023 Peter Gladbach
Jonas Jansen
Christina Lienstromberg
+ PDF Chat $$L^p$$-strong solution to fluid-rigid body interaction system with Navier slip boundary condition 2021 Hind Al Baba
Amrita Ghosh
Boris Muha
Šárka Nečasová
+ Strong Solutions for the Interaction of a Rigid Body and a Viscoelastic Fluid 2012 Karoline Götze
+ Lp-theory for a class of viscoelastic fluids with and without a free surface 2012 Manuel Nesensohn
+ PDF Chat Weak solutions for a non-Newtonian diffuse interface model with different densities 2016 Helmut Abels
Dominic Breit
+ Upper and lower bounds of convergence rates for strong solutions of the generalized Newtonian fluids with non-standard growth conditions 2022 Jae‐Myoung Kim
Seungchan Ko
+ Stationary weak solutions for a class of non-Newtonian fluids with energy transfer 1997 Luisa Consiglieri
+ Global Existence of Strong Solution for Equations Related to the Incompressible Viscoelastic Fluids in the Critical $L^p$ Framework 2012 Ting Zhang
Daoyuan Fang
+ PDF Chat Viscoelastic flows of Maxwell fluids with conservation laws 2020 Sébastien Boyaval

Works That Cite This (61)

Action Title Year Authors
+ Uniform stabilization in Besov spaces with arbitrary decay rates of the magnetohydrodynamic system by finite-dimensional interior localized static feedback controllers 2024 Irena Lasiecka
Buddhika Priyasad
Roberto Triggiani
+ PDF Chat Stabilization of a fluid–rigid body system 2015 Takéo Takahashi
Marius Tucsnak
George H. Weiss
+ PDF Chat Uniform Stabilization of 3D Navier–Stokes Equations in Low Regularity Besov Spaces with Finite Dimensional, Tangential-Like Boundary, Localized Feedback Controllers 2021 Irena Lasiecka
Buddhika Priyasad
Roberto Triggiani
+ PDF Chat Finite-dimensional boundary uniform stabilization of the Boussinesq system in Besov spaces by critical use of Carleman estimate-based inverse theory 2021 Irena Lasiecka
Buddhika Priyasad
Roberto Triggiani
+ PDF Chat Uniform Stabilization of Navier–Stokes Equations in Critical $$L^q$$-Based Sobolev and Besov Spaces by Finite Dimensional Interior Localized Feedback Controls 2019 Irena Lasiecka
Buddhika Priyasad
Roberto Triggiani
+ PDF Chat Motion of a rigid body in a compressible fluid with Navier-slip boundary condition 2022 Šárka Nečasová
Mythily Ramaswamy
Arnab Roy
Anja Schlömerkemper
+ PDF Chat Uniform stabilization of Boussinesq systems in critical <inline-formula><tex-math id="M1">\begin{document}$ \mathbf{L}^q $\end{document}</tex-math></inline-formula>-based Sobolev and Besov spaces by finite dimensional interior localized feedback controls 2020 Irena Lasiecka
Buddhika Priyasad
Roberto Triggiani
+ PDF Chat Self-propelled motion of a rigid body inside a density dependent incompressible fluid 2020 Šárka Nečasová
Mythily Ramaswamy
Arnab Roy
Anja Schlömerkemper
+ Suitable Weak Solutions of the Incompressible Magnetohydrodynamic Equations in Time Varying Domains 2020 Yunsoo Jang
Dugyu Kim
+ Maximal <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si5.svg" display="inline" id="d1e62"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msup></mml:math>-regularity of an abstract evolution equation: Application to closed-loop feedback problems, with boundary controls and boundary sensors 2024 Irena Lasiecka
Buddhika Priyasad
Roberto Triggiani