Analytic Toeplitz operators with automorphic symbol

Type: Article

Publication Date: 1975-01-01

Citations: 27

DOI: https://doi.org/10.1090/s0002-9939-1975-0405156-8

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> denote the annulus <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="StartSet z colon 1 slash 2 greater-than StartAbsoluteValue z EndAbsoluteValue greater-than 1 EndSet"> <mml:semantics> <mml:mrow> <mml:mo fence="false" stretchy="false">{</mml:mo> <mml:mi>z</mml:mi> <mml:mo>:</mml:mo> <mml:mn>1</mml:mn> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> <mml:mo>&gt;</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>z</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mo>&gt;</mml:mo> <mml:mn>1</mml:mn> <mml:mo fence="false" stretchy="false">}</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\{ z:1/2 &gt; |z| &gt; 1\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="pi"> <mml:semantics> <mml:mi>π<!-- π --></mml:mi> <mml:annotation encoding="application/x-tex">\pi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a holomorphic universal covering map from the unit disk onto <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. It is shown that if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="pi"> <mml:semantics> <mml:mi>π<!-- π --></mml:mi> <mml:annotation encoding="application/x-tex">\pi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a function of an inner function <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="omega"> <mml:semantics> <mml:mi>ω<!-- ω --></mml:mi> <mml:annotation encoding="application/x-tex">\omega</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, that is, if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="pi left-parenthesis z right-parenthesis equals pi left-parenthesis omega left-parenthesis z right-parenthesis right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>π<!-- π --></mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>z</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>π<!-- π --></mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>ω<!-- ω --></mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>z</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\pi (z) = \pi (\omega (z))</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="omega"> <mml:semantics> <mml:mi>ω<!-- ω --></mml:mi> <mml:annotation encoding="application/x-tex">\omega</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a linear fractional transformation. However, the analytic Toeplitz operator <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper T Subscript pi"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>T</mml:mi> <mml:mi>π<!-- π --></mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{T_\pi }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has nontrivial reducing subspaces. These facts answer in the negative a question raised by Nordgren [10]. Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="phi"> <mml:semantics> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:annotation encoding="application/x-tex">\phi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be the function <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="phi left-parenthesis z right-parenthesis equals pi left-parenthesis z right-parenthesis minus 3 slash 4"> <mml:semantics> <mml:mrow> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>z</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>π<!-- π --></mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>z</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mn>3</mml:mn> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">\phi (z) = \pi (z) - 3/4</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="phi equals chi upper F"> <mml:semantics> <mml:mrow> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:mo>=</mml:mo> <mml:mi>χ<!-- χ --></mml:mi> <mml:mi>F</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\phi = \chi F</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be the inner-outer factorization of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="phi"> <mml:semantics> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:annotation encoding="application/x-tex">\phi</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. An operator <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper C"> <mml:semantics> <mml:mi>C</mml:mi> <mml:annotation encoding="application/x-tex">C</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is produced which commutes with <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper T Subscript phi"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>T</mml:mi> <mml:mi>ϕ<!-- ϕ --></mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{T_\phi }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> but does not commute with <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper T Subscript chi"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>T</mml:mi> <mml:mi>χ<!-- χ --></mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{T_\chi }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> nor with <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper T Subscript upper F"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>T</mml:mi> <mml:mi>F</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{T_F}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. This answers in the negative a question raised by Deddens and Wong [7]. The functions <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="pi"> <mml:semantics> <mml:mi>π<!-- π --></mml:mi> <mml:annotation encoding="application/x-tex">\pi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="phi"> <mml:semantics> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:annotation encoding="application/x-tex">\phi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are both automorphic under the group of covering transformations for <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="pi"> <mml:semantics> <mml:mi>π<!-- π --></mml:mi> <mml:annotation encoding="application/x-tex">\pi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and hence may be viewed as functions on the annulus <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. This point of view is critical in these examples.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Analytic Toeplitz operators with automorphic symbol. II 1976 M. B. Abrahamse
Joseph A. Ball
+ Commutants of analytic toeplitz operators with automorphic symbol 1978 Carl C. Cowen
+ Analytic Toeplitz Operators with Automorphic Symbol.II 1976 M. B. Abrahamse
Joseph A. Ball
+ PDF Chat Exact sequences for generalized Toeplitz operators 1987 Carl Johan Sundberg
+ PDF Chat The commutant of an analytic Toeplitz operator 1978 Carl C. Cowen
+ PDF Chat An analogue of Siegel’s 𝜙-operator for automorphic forms for 𝐺𝐿_{𝑛}(𝑍) 1992 Douglas Grenier
+ PDF Chat The commutants of certain analytic Toeplitz operators 1976 James E. Thomson
+ PDF Chat Intersections of commutants of analytic Toeplitz operators 1975 James E. Thomson
+ Toeplitz operators on Bloch-type spaces 2006 Zhijian Wu
Ruhan Zhao
Nina Zorboska
+ PDF Chat Holomorphic kernels and commuting operators 1987 Ameer Athavale
+ PDF Chat Hyponormality of Toeplitz operators 1988 Carl C. Cowen
+ PDF Chat The commutant of analytic Toeplitz operators 1973 James A. Deddens
Tin Kin Wong
+ On operators which commute with analytic Toeplitz operators modulo the finite rank operators 2006 Kunyu Guo
Kai Wang
+ PDF Chat Szegő limit theorems for Toeplitz operators on compact homogeneous spaces 1982 I. I. Hirschman
D. S. Liang
Edward N. Wilson
+ PDF Chat VMO, ESV, and Toeplitz operators on the Bergman space 1987 Ke Zhu
+ PDF Chat Analytic Toeplitz Operators with Automorphic Symbol 1975 M. B. Abrahamse
+ Representation of automorphic forms as lacunary series and Blaschke products 2009 N. N. Garif’yanov
+ PDF Chat Jacobi matrices with absolutely continuous spectrum 1999 Jan Janas
Serguei Naboko
+ PDF Chat Intertwining differential operators for 𝑀𝑝(𝑛,𝑅) and 𝑆𝑈(𝑛,𝑛) 1978 Hans Plesner Jakobsen
+ PDF Chat Perturbation theory for the Laplacian on automorphic functions 1992 Ralph S. Phillips
Peter Sarnak

Works That Cite This (27)

Action Title Year Authors
+ PDF Chat Geometric constructions of thin Blaschke products and reducing subspace problem 2014 Kunyu Guo
Hansong Huang
+ The operator <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msub><mml:mrow><mml:mi>M</mml:mi></mml:mrow><mml:mrow><mml:msubsup><mml:mrow><mml:mi>z</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msubsup><mml:msubsup><mml:mrow><mml:mi>z</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msubsup></mml:mrow></mml:msub></mml:math> on subspaces of Bergman spaces … 2020 Hyun‐Kyoung Kwon
Hui Li
Yucheng Li
+ PDF Chat Multiplication by a finite Blaschke product on weighted Bergman spaces: Commutant and reducing subspaces 2022 Eva A. Gallardo‐Gutiérrez
J. R. Partington
+ THE COMMUTANT OF A CLASS OF ANALYTIC 2016 Toeplitz Operators
James E. Thomson
+ PDF Chat Reducing subspaces of weighted shift operators 2002 Michael Stessin
Kehe Zhu
+ An analytic Toeplitz operator that commutes with a compact operator and a related class of Toeplitz operators 1980 Carl C. Cowen
+ PDF Chat Abrahamse's interpolation theorem and Fuchsian groups 2009 Mrinal Raghupathi
+ Inner divisors and composition operators 1982 Donald E. Marshall
Kenneth Stephenson
+ Multiplication operators defined by covering maps on the Bergman space: The connection between operator theory and von Neumann algebras 2010 Kunyu Guo
Hansong Huang
+ Commutants, Reducing Subspaces and von Neumann Algebras Associated with Multiplication Operators 2019 Kunyu Guo
Hansong Huang