Type: Article
Publication Date: 1975-01-01
Citations: 27
DOI: https://doi.org/10.1090/s0002-9939-1975-0405156-8
Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> denote the annulus <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="StartSet z colon 1 slash 2 greater-than StartAbsoluteValue z EndAbsoluteValue greater-than 1 EndSet"> <mml:semantics> <mml:mrow> <mml:mo fence="false" stretchy="false">{</mml:mo> <mml:mi>z</mml:mi> <mml:mo>:</mml:mo> <mml:mn>1</mml:mn> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> <mml:mo>></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>z</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mo>></mml:mo> <mml:mn>1</mml:mn> <mml:mo fence="false" stretchy="false">}</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\{ z:1/2 > |z| > 1\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="pi"> <mml:semantics> <mml:mi>π<!-- π --></mml:mi> <mml:annotation encoding="application/x-tex">\pi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a holomorphic universal covering map from the unit disk onto <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. It is shown that if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="pi"> <mml:semantics> <mml:mi>π<!-- π --></mml:mi> <mml:annotation encoding="application/x-tex">\pi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a function of an inner function <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="omega"> <mml:semantics> <mml:mi>ω<!-- ω --></mml:mi> <mml:annotation encoding="application/x-tex">\omega</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, that is, if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="pi left-parenthesis z right-parenthesis equals pi left-parenthesis omega left-parenthesis z right-parenthesis right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>π<!-- π --></mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>z</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>π<!-- π --></mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>ω<!-- ω --></mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>z</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\pi (z) = \pi (\omega (z))</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="omega"> <mml:semantics> <mml:mi>ω<!-- ω --></mml:mi> <mml:annotation encoding="application/x-tex">\omega</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a linear fractional transformation. However, the analytic Toeplitz operator <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper T Subscript pi"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>T</mml:mi> <mml:mi>π<!-- π --></mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{T_\pi }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has nontrivial reducing subspaces. These facts answer in the negative a question raised by Nordgren [10]. Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="phi"> <mml:semantics> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:annotation encoding="application/x-tex">\phi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be the function <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="phi left-parenthesis z right-parenthesis equals pi left-parenthesis z right-parenthesis minus 3 slash 4"> <mml:semantics> <mml:mrow> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>z</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>π<!-- π --></mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>z</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mn>3</mml:mn> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">\phi (z) = \pi (z) - 3/4</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="phi equals chi upper F"> <mml:semantics> <mml:mrow> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:mo>=</mml:mo> <mml:mi>χ<!-- χ --></mml:mi> <mml:mi>F</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\phi = \chi F</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be the inner-outer factorization of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="phi"> <mml:semantics> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:annotation encoding="application/x-tex">\phi</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. An operator <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper C"> <mml:semantics> <mml:mi>C</mml:mi> <mml:annotation encoding="application/x-tex">C</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is produced which commutes with <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper T Subscript phi"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>T</mml:mi> <mml:mi>ϕ<!-- ϕ --></mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{T_\phi }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> but does not commute with <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper T Subscript chi"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>T</mml:mi> <mml:mi>χ<!-- χ --></mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{T_\chi }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> nor with <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper T Subscript upper F"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>T</mml:mi> <mml:mi>F</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{T_F}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. This answers in the negative a question raised by Deddens and Wong [7]. The functions <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="pi"> <mml:semantics> <mml:mi>π<!-- π --></mml:mi> <mml:annotation encoding="application/x-tex">\pi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="phi"> <mml:semantics> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:annotation encoding="application/x-tex">\phi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are both automorphic under the group of covering transformations for <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="pi"> <mml:semantics> <mml:mi>π<!-- π --></mml:mi> <mml:annotation encoding="application/x-tex">\pi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and hence may be viewed as functions on the annulus <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. This point of view is critical in these examples.