The Littlewood-Offord problem in high dimensions and a conjecture of Frankl and Füredi

Type: Article

Publication Date: 2012-04-01

Citations: 17

DOI: https://doi.org/10.1007/s00493-012-2716-x

Abstract

We give a new bound on the probability that the random sum ξ 1 v 1+…+ξ n v n belongs to a ball of fixed radius, where the ξ i are i.i.d. Bernoulli random variables and the v i are vectors in R d . As an application, we prove a conjecture of Frankl and Füredi (raised in 1988), which can be seen as the high dimensional version of the classical Littlewood-Offord-Erdős theorem.

Locations

  • COMBINATORICA - View
  • arXiv (Cornell University) - View - PDF
  • arXiv (Cornell University) - PDF
  • COMBINATORICA - View
  • arXiv (Cornell University) - View - PDF
  • arXiv (Cornell University) - PDF

Similar Works

Action Title Year Authors
+ The Littlewood-Offord problem in high dimensions and a conjecture of Frankl and Füredi 2010 Terence Tao
Van Vu
+ PDF The Littlewood-Offord problem for Markov chains 2021 Shravas Rao
+ PDF Chat The Reverse Littlewood--Offord problem of Erd\H{o}s 2024 Xiaoyu He
Tomas Juškevičius
Bhargav Narayanan
Sam Spiro
+ PDF Chat A sharp inverse Littlewood-Offord theorem 2010 Terence Tao
Van Vu
+ Optimal inverse Littlewood–Offord theorems 2011 Hoi H. Nguyen
Van Vu
+ Small ball probability, Inverse theorems, and applications 2013 Hoi H. Nguyen
Van H. Vu
+ The Littlewood-Offord Problem for Markov Chains 2019 Shravas Rao
+ A sharp inverse Littlewood-Offord theorem 2009 Terence Tao
Van Vu
+ PDF Chat Erdős–Littlewood–Offord problem with arbitrary probabilities 2022 Mihir Singhal
+ Erdos-Littlewood-Offord problem with arbitrary probabilities 2019 Mihir Singhal
+ Optimal Inverse Littlewood-Offord theorems 2010 Hoi H. Nguyen
Van Vu
+ Optimal Inverse Littlewood-Offord theorems 2010 Hoi H. Nguyen
Van Vu
+ A non-uniform Littlewood–Offord inequality 2020 Dainius Dzindzalieta
Tomas Juškevičius
+ A nonuniform Littlewood–Offord inequality for all norms 2021 Kyle Luh
David Xiang
+ On Littlewood-Offord theory for arbitrary distributions 2019 Tomas Juškevičius
Valentas Kurauskas
+ On Littlewood-Offord theory for arbitrary distributions 2019 Tomas Juškevičius
Valentas Kurauskas
+ PDF Chat Small Ball Probability, Inverse Theorems, and Applications 2013 Hoi H. Nguyen
Van H. Vu
+ A non-uniform Littlewood-Offord inequality 2019 Dainius Dzindzalieta
Tomas Juškevičius
+ Resolution of the quadratic Littlewood--Offord problem 2023 Matthew Kwan
Lisa Sauermann
+ The Deza-Erdős-Frankl theorem 2018 Péter Frankl
Norihide Tokushige