Type: Article
Publication Date: 1995-01-01
Citations: 13
DOI: https://doi.org/10.1090/s0002-9947-1995-1308007-x
We consider a sequence <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis upper M Subscript n Baseline right-parenthesis Subscript n equals 1 Superscript normal infinity"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>M</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:msubsup> <mml:mo stretchy="false">)</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>n</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mi mathvariant="normal">∞</mml:mi> </mml:msubsup> </mml:mrow> <mml:annotation encoding="application/x-tex">({M_n})_{n = 1}^\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of compact hyperbolic manifolds converging to a complete hyperbolic manifold <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper M 0"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>M</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{M_0}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with cusps. The Laplace operator acting on the space of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L squared"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{L^2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> differential forms on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper M 0"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>M</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{M_0}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has continuous spectrum filling the half-line <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-bracket 0 comma normal infinity right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi mathvariant="normal">∞</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">[0,\infty )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. One expects therefore that the spectra of this operator on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper M Subscript n"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>M</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{M_n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> accumulate to produce the continuous spectrum of the limiting manifold. We prove that this is the case and obtain a sharp estimate of the rate of accumulation.