The spectrum of the Hodge Laplacian for a degenerating family of hyperbolic three manifolds

Type: Article

Publication Date: 1995-01-01

Citations: 13

DOI: https://doi.org/10.1090/s0002-9947-1995-1308007-x

Abstract

We consider a sequence <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis upper M Subscript n Baseline right-parenthesis Subscript n equals 1 Superscript normal infinity"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>M</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:msubsup> <mml:mo stretchy="false">)</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>n</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mi mathvariant="normal">∞</mml:mi> </mml:msubsup> </mml:mrow> <mml:annotation encoding="application/x-tex">({M_n})_{n = 1}^\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of compact hyperbolic manifolds converging to a complete hyperbolic manifold <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper M 0"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>M</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{M_0}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with cusps. The Laplace operator acting on the space of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L squared"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{L^2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> differential forms on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper M 0"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>M</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{M_0}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has continuous spectrum filling the half-line <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-bracket 0 comma normal infinity right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi mathvariant="normal">∞</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">[0,\infty )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. One expects therefore that the spectra of this operator on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper M Subscript n"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>M</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{M_n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> accumulate to produce the continuous spectrum of the limiting manifold. We prove that this is the case and obtain a sharp estimate of the rate of accumulation.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat The spectrum of degenerating hyperbolic 3-manifolds 1994 Isaac Chavel
J. Dodziuk
+ PDF Chat Hyperbolic manifolds with a large number of systoles 2023 Cayo Dória
Emanoel M. S. Freire
Plinio G. P. Murillo
+ PDF Chat Ends of hyperbolic 3-manifolds 1993 Richard D. Canary
+ Exceptional sequences of eigenfunctions for hyperbolic manifolds 2006 Harold Donnelly
+ PDF Chat A characterization of hyperbolic manifolds 1993 Marco Abate
+ On the geometry and spectral asymptotics of degenerating hyperbolic three manifolds 1997 Józef Dodziuk
Jay Jorgenson
+ A locally hyperbolic 3-manifold that is not hyperbolic 2018 Tommaso Cremaschi
+ Boundary structure of hyperbolic 3-manifolds admitting annular fillings at large distance 2006 Sangyop Lee
+ Hyperbolic 3-Manifolds and Their Computational Aspect 2006 G. Robert Meyerhoff
+ Threefolds with vanishing Hodge cohomology 2004 Jing Zhang
+ Degree-one maps between hyperbolic 3-manifolds with the same volume limit 2001 Teruhiko Soma
+ The ortho-length spectrum for hyperbolic 3-manifolds 1996 G. Robert Meyerhoff
+ PDF Chat Heegaard diagrams of 3-manifolds 1991 Mitsuyuki Ochiai
+ Cut numbers of 3-manifolds 2004 Adam Sikora
+ Spectral geometry of hyperbolic 3-manifolds 1994 Patrick James Callahan
+ PDF Chat Decompositions into codimension-two manifolds 1985 Robert J. Daverman
J. Walsh
+ WHAT IS...a Hyperbolic 3-Manifold? 2018 Colin Adams
+ Generating the Fukaya categories of Hamiltonian 𝐺-manifolds 2018 J. D. Evans
Yankı Lekili
+ THE ORTHO-LENGTH SPECTRUM FOR HYPERBOLIC 3-MANIFOLDS 1996 G. Robert Meyerhoff
+ The geometry and spectra of hyperbolic manifolds 1994 Peter D. Hislop