Smooth Approximation of Lipschitz Functions on Finsler Manifolds

Type: Article

Publication Date: 2013-01-01

Citations: 8

DOI: https://doi.org/10.1155/2013/164571

Abstract

We study the smooth approximation of Lipschitz functions on Finsler manifolds, keeping control on the corresponding Lipschitz constants. We prove that, given a Lipschitz function<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mi>f</mml:mi><mml:mo>:</mml:mo><mml:mi>M</mml:mi><mml:mo>→</mml:mo><mml:mi>ℝ</mml:mi></mml:math>defined on a connected, second countable Finsler manifold<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:mrow><mml:mi>M</mml:mi></mml:mrow></mml:math>, for each positive continuous function<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M3"><mml:mi>ε</mml:mi><mml:mo>:</mml:mo><mml:mi>M</mml:mi><mml:mo>→</mml:mo><mml:mo stretchy="false">(</mml:mo><mml:mn mathvariant="normal">0</mml:mn><mml:mo>,</mml:mo><mml:mi mathvariant="normal">∞</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>and each<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M4"><mml:mi>r</mml:mi><mml:mo>&gt;</mml:mo><mml:mn mathvariant="normal">0</mml:mn></mml:math>, there exists a<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M5"><mml:mrow><mml:msup><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant="normal">1</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>-smooth Lipschitz function<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M6"><mml:mi>g</mml:mi><mml:mo>:</mml:mo><mml:mi>M</mml:mi><mml:mo>→</mml:mo><mml:mi>ℝ</mml:mi></mml:math>such that<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M7"><mml:mo stretchy="false">|</mml:mo><mml:mi>f</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>x</mml:mi><mml:mo stretchy="false">)</mml:mo><mml:mo>-</mml:mo><mml:mi>g</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>x</mml:mi><mml:mo stretchy="false">)</mml:mo><mml:mo stretchy="false">|</mml:mo><mml:mo>≤</mml:mo><mml:mi>ε</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>x</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>, for every<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M8"><mml:mi>x</mml:mi><mml:mo>∈</mml:mo><mml:mi>M</mml:mi></mml:math>, and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M9"><mml:mtext>L</mml:mtext><mml:mtext>i</mml:mtext><mml:mtext>p</mml:mtext><mml:mo stretchy="false">(</mml:mo><mml:mi>g</mml:mi><mml:mo stretchy="false">)</mml:mo><mml:mo>≤</mml:mo><mml:mtext>L</mml:mtext><mml:mtext>i</mml:mtext><mml:mtext>p</mml:mtext><mml:mo stretchy="false">(</mml:mo><mml:mi>f</mml:mi><mml:mo stretchy="false">)</mml:mo><mml:mo>+</mml:mo><mml:mi>r</mml:mi></mml:math>. As a consequence, we derive a completeness criterium in the class of what we call quasi-reversible Finsler manifolds. Finally, considering the normed algebra<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M10"><mml:msubsup><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mi>b</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant="normal">1</mml:mn></mml:mrow></mml:msubsup><mml:mo stretchy="false">(</mml:mo><mml:mi>M</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>of all<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M11"><mml:mrow><mml:msup><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant="normal">1</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>functions with bounded derivative on a complete quasi-reversible Finsler manifold<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M12"><mml:mrow><mml:mi>M</mml:mi></mml:mrow></mml:math>, we obtain a characterization of algebra isomorphisms<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M13"><mml:mi>T</mml:mi><mml:mo>:</mml:mo><mml:msubsup><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mi>b</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant="normal">1</mml:mn></mml:mrow></mml:msubsup><mml:mo stretchy="false">(</mml:mo><mml:mi>N</mml:mi><mml:mo stretchy="false">)</mml:mo><mml:mo>→</mml:mo><mml:msubsup><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mi>b</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant="normal">1</mml:mn></mml:mrow></mml:msubsup><mml:mo stretchy="false">(</mml:mo><mml:mi>M</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>as composition operators. From this we obtain a variant of Myers-Nakai Theorem in the context of complete reversible Finsler manifolds.

Locations

  • Journal of Function Spaces and Applications - View - PDF
  • DOAJ (DOAJ: Directory of Open Access Journals) - View
  • LA Referencia (Red Federada de Repositorios Institucionales de Publicaciones Científicas) - View - PDF

Similar Works

Action Title Year Authors
+ On some problems on smooth approximation and smooth extension of Lipschitz functions on Banach-Finsler Manifolds 2010 M. J. Sevilla
Luis Sánchez-González
+ PDF Chat On some problems on smooth approximation and smooth extension of Lipschitz functions on Banach–Finsler manifolds 2011 M. J. Sevilla
Luis Sánchez-González
+ Smooth semi-Lipschitz functions and almost isometries of Finsler manifolds 2019 Aris Daniilidis
Jesús Á. Jaramillo
Francisco Venegas M
+ Smooth semi-Lipschitz functions and almost isometries of Finsler manifolds 2019 Aris Daniilidis
Jesús Á. Jaramillo
Francisco Venegas M
+ Smooth Maps 2003 John M. Lee
+ Smooth semi-Lipschitz functions and almost isometries between Finsler manifolds 2020 Aris Daniilidis
Jesús Á. Jaramillo
Francisco Venegas M
+ A Note on Lipschitz Distance for Smooth Structures on Non-compact Manifolds 1990 Ken′ichi Kuga
+ Smooth actions of 𝑅ⁿ 2005 Sol Schwartzman
+ On Characterization of Lipschitz Manifolds 1999 J. Malešič
Dušan Repovš
+ PDF Chat Introduction to smooth manifolds 2003
+ PDF Chat 2𝑘-regular maps on smooth manifolds 1996 David Handel
+ Manifolds and Smooth Mappings 2020 David Mond
J. J. Nuño‐Ballesteros
+ PDF Chat Smoothings and homeomorphisms for Hilbert manifolds 1970 Dan Burghelea
David Henderson
+ Smooth representations of epi-Lipschitzian subsets of 1999 Bernard Cornet
Marc-Olivier Czarnecki
+ PDF Chat Smooth Approximation of Lipschitz Projections 2011 Hanfeng Li
+ On isomorphisms of algebras of smooth functions 2005 J. Mrčun
+ On Lipschitz structures 1965 Michael A. Geraghty
+ Chapter 2. Spaces of smooth functions 2012
+ Smooth Functions on Manifolds 2021 James K. Peterson
+ Smooth manifolds 2025