Uniform Decay of Local Energy and the Semi-Linear Wave Equation on Schwarzschild Space

Type: Article

Publication Date: 2006-09-11

Citations: 145

DOI: https://doi.org/10.1007/s00220-006-0101-6

Locations

  • Communications in Mathematical Physics - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Local energy estimate on Kerr black hole backgrounds 2008 Daniel Tataru
Mihai Tohaneanu
+ PDF Chat Local decay of waves on asymptotically flat stationary space-times 2013 Daniel Tataru
+ Local decay of waves on asymptotically flat stationary space-times 2009 Daniel Tataru
+ Local decay of waves on asymptotically flat stationary space-times 2009 Daniel Tataru
+ Global existence for quasilinear wave equations close to Schwarzschild 2016 Hans Lindblad
Mihai Tohaneanu
+ Global existence for quasilinear wave equations close to Schwarzschild 2016 Hans Lindblad
Mihai Tohaneanu
+ PDF Chat Sharp decay estimates for massless Dirac fields on a Schwarzschild background 2021 Siyuan Ma
Lin Zhang
+ Local energy decay for linear wave equations with variable coefficients 2005 Ryo Ikehata
+ PDF Chat Global existence for quasilinear wave equations close to Schwarzschild 2018 Hans Lindblad
Mihai Tohaneanu
+ PDF Chat Improved Decay for Solutions to the Linear Wave Equation on a Schwarzschild Black Hole 2010 Jonathan Luk
+ A note on energy currents and decay for the wave equation on a Schwarzschild background 2007 Mihalis Dafermos
Igor Rodnianski
+ PDF Chat Semilinear wave equations on the Schwarzschild manifold. I. Local decay estimates 2003 Pieter Blue
Avy Soffer
+ Semilinear wave equations on the Schwarzschild manifold I: Local decay estimates 2003 Pieter Blue
Avy Soffer
+ PDF Chat Asymptotic Decay for Defocusing Semilinear Wave Equations on Schwarzschild Spacetimes 2025 Mei He
Dongyi Wei
Shiwu Yang
+ PDF Chat Strichartz Estimates on Schwarzschild Black Hole Backgrounds 2009 Jeremy L. Marzuola
Jason Metcalfe
Daniel Tataru
Mihai Tohaneanu
+ The wave equation on the Schwarzschild spacetime with small non-decaying first-order terms 2023 Gustav Holzegel
Christopher Kauffman
+ Asymptotic decay for defocusing semilinear wave equations on Schwarzschild spacetimes 2023 Mei He
Dongyi Wei
Shiwu Yang
+ PDF Chat Decay and Non-Decay of the Local Energy for the Wave Equation on the De Sitterā€“Schwarzschild Metric 2008 Jeanā€FranƧois Bony
Dietrich HƤfner
+ Pointwise decay for the wave equation on nonstationary spacetimes 2021 Shi-Zhuo Looi
+ Semilinear wave equation in Schwarzschild metric 2004 Davide Catania
Vladimir Georgiev