Type: Article
Publication Date: 1997-05-01
Citations: 7
DOI: https://doi.org/10.1017/s001708950003202x
In [ 18 ] Shioda proved that the space of holomorphic 2-forms on a certain type of elliptic surface is canonically isomorphic to the space of modular forms of weight three for the associated Fuchsian group. Later, Hunt and Meyer [6] made an observation that the holomorphic 2-forms on a more general elliptic surface should in fact be identified with mixed automorphic forms associated to an automorphy factor of the form for z in the Poincaré upper half plane ℋ, g = and χ( g ) = , where g is an element of the fundamental group Γ⊂PSL(2, R) of the base space of the elliptic fibration, χ-Γ→SL(2, R) the monodromy representation, and w: ℋ→ℋ the lifting of the period map of the elliptic surface.