On products of consecutive arithmetic progressions

Type: Article

Publication Date: 2014-09-06

Citations: 7

DOI: https://doi.org/10.1016/j.jnt.2014.07.003

Locations

  • Journal of Number Theory - View

Similar Works

Action Title Year Authors
+ Products of Arithmetic Progressions which are Squares 2015 Shin-ichi Katayama
+ On equal values of products and power sums of consecutive elements in an arithmetic progression 2023 András Bazsó
Dijana Kreso
Florian Luca
Ákos Pintér
Csaba Rakaczki
+ Positive Integer of Diophantine Equation a~x+b~y=c~z 2012 Chen Jin-ping
+ Sums of divisors on arithmetic progressions 2021 Prapanpong Pongsriiam
+ ON THE DIOPHANTINE EQUATION axy + byz + czx = 0 2011 Zhongfeng Zhang
Pingzhi Yuan
+ PDF Chat A Note on Some Diophantine Equations 2015 Hilal Başak Özdemir
Refık Keskin
+ On the diophantine equation x² + 4.7ᵇ = y²ʳ 2013 Kai Siong Yow
Siti Hasana Sapar
Kamel Ariffin Mohd Atan
+ PDF Chat On the Diophantine equation x 2 − kxy + y 2 − 2 n = 0 2013 Refık Keskin
Zafer Şi̇ar
Olcay Karaatlı
+ PDF Chat Sums of divisors on arithmetic progressions 2023 Prapanpong Pongsriiam
+ On the Integer Solution of Diophantion Equations x~2+b~(2y_1)=c~(2z_1) 2003 Yang Shi
+ PDF Chat Positive integer solutions of the diophantine equations $x^2 -5 F_n xy - 5(-1)^n y^2 = \pm 5^r$ 2013 Refık Keskin
Olcay Karaatlı
Zafer Şi̇ar
+ PDF Chat On primitive integer solutions of ternary quadratic Diophantine equation x2+y2+4xy+2x+1=z2+4xz 2022 A. Hari Ganesh
K. Prabhakaran
+ Arithmetic properties of polynomials 2017 Yong Zhang
Zhongyan Shen
+ PDF Chat Arithmetic properties of polynomials 2020 Yong Zhang
Zhongyan Shen
+ On the Diophantine equation $f(x)f(y)=f(z^2)$ 2013 Yong Zhang
Tianxin Cai
+ Diophantine equation related to arithmetic progression 2021 Ram Singh
Megha Rani
+ Upper bounds for solutions of an exponential Diophantine equation 2015 Takafumi Miyazaki
+ Infinitely many positive integer solutions of the quadratic Diophantine Equation $x^2-8B_nxy-2y^2=\pm 2^r$ 2014 Olcay Karaatlı
Refık Keskin
Huilin Zhu
+ The Diophantine equation a~4x(x+1)(x+2)(x+3)=y(y+1)(y+2)(y+3) 2009 LE Mao-hua
+ PDF Chat On the Diophantine Equation (p + 4n)^ x + p^y = z^2 2022 Wachirarak Orosram
Kitsanuphong Makonwattana
Saichon Khongsawat