Numerical computations with the trace formula and the Selberg eigenvalue conjecture

Type: Article

Publication Date: 2007-01-27

Citations: 28

DOI: https://doi.org/10.1515/crelle.2007.047

Abstract

We verify the Selberg eigenvalue conjecture for congruence groups of small squarefree conductor, improving on a result of Huxley [M. N. Huxley, Introduction to Kloostermania, in: Elementary and analytic theory of numbers, Banach Center Publ. 17, Warsaw (1985), 217–306.]. The main tool is the Selberg trace formula which, unlike previous geometric methods, allows for treatment of cases where the eigenvalue 1/4 is present. We present a few other sample applications, including the classification of even 2-dimensional Galois representations of small squarefree conductor.

Locations

  • CiteSeer X (The Pennsylvania State University) - View - PDF
  • Journal für die reine und angewandte Mathematik (Crelles Journal) - View

Similar Works

Action Title Year Authors
+ PDF Chat Twist‐minimal trace formulas and the Selberg eigenvalue conjecture 2020 Andrew R. Booker
Min Lee
Andreas Strömbergsson
+ PDF Chat Rigorous computation of Maass cusp forms of squarefree level 2022 Andrei Seymour-Howell
+ Trace formulas and class number sums 2006 Nathan Jones
+ Rigorous computation of Maass cusp forms of squarefree level 2022 Andrei Seymour-Howell
+ The Selberg Trace Formula and Selberg Zeta-Function for Cofinite Kleinian Groups with Finite Dimensional Unitary Representations: Stony Brook University PhD Thesis 2006 Joshua S. Friedman
+ The Selberg Trace Formula and Selberg Zeta-Function for Cofinite Kleinian Groups with Finite Dimensional Unitary Representations: Stony Brook University PhD Thesis 2006 Joshua S. Friedman
+ A Simple Trace Formula for Algebraic Modular Forms 2013 Neil Dummigan
+ Selberg's Lower Bound of the First Eigenvalue for Congruence Groups 1989 Henryk Iwaniec
+ PDF Chat Computational Aspects of Modular Forms and Galois Representations 2011 Jean-Marc Couveignes
Bas Edixhoven
+ PDF Chat The Selberg trace formula for congruence subgroups 1975 Dennis A. Hejhal
+ PDF Chat Density theorems for exceptional eigenvalues for congruence subgroups 2018 Peter Humphries
+ Arithmetic expressions of Selberg's zeta functions for congruence subgroups 2006 Yasufumi Hashimoto
+ PDF Chat On Cartier-Voros type Selberg trace formula for congruence subgroups of ${PSL} \left( {2, \mathbf{R}} \right)$ 1995 Miki Hirano
+ Generalization of Selberg's 3/16 Theorem and Affine Sieve 2009 Jean Bourgain
Alex Gamburd
Peter Sarnak
+ Traces of Hecke operators and refined weight enumerators of Reed-Solomon codes 2016 Nathan O. Kaplan
Ian Petrow
+ PDF Chat Trace formulas and class number sums 2008 Nathan Jones
+ PDF Chat Corrigendum to my paper “The Rankin-Selberg method on congruence subgroups” 2000 Shamita Dutta Gupta
+ COMPUTATIONS WITH FINITE INDEX SUBGROUPS OF PSL<sub>2</sub>(ℤ) USING FAREY SYMBOLS 2008 Chris A. Kurth
Линг Лонг
+ PDF Chat A numerical study on exceptional eigenvalues of certain congruence subgroups of $$\mathrm {SO}(n,1)$$ SO ( n , 1 ) and $$\mathrm {SU}(n,1)$$ SU ( n , 1 ) 2014 Emilio A. Lauret
+ PDF Chat Zeroes of Rankin-Selberg $L$-functions and the trace formula 2024 Tian An Wong